Silicon Nanowire Solar Cells

  • Guijun Li
  • Hoi-Sing Kwok


Over the past decade, silicon nanowire solar cells have been intensively explored as potential platforms for the next-generation photovoltaic (PV) technologies with high power conversion efficiency and low production cost. This chapter discusses the details of the silicon nanowire solar cells in terms of their device structures, fabrication and characterization, electrical and optical properties benefited from the nanowire geometry. These benefits are not only expected to increase the power conversion efficiency, but also considered to reduce the requirement for the material quantity and quality, allowing for potential efficiency improvements and substantial cost reductions.


  1. 1.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). CrossRefGoogle Scholar
  2. 2.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005). CrossRefGoogle Scholar
  3. 3.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007). CrossRefGoogle Scholar
  4. 4.
    R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics. 3, 569–576 (2009). CrossRefGoogle Scholar
  5. 5.
    B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005). CrossRefGoogle Scholar
  6. 6.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007). CrossRefGoogle Scholar
  7. 7.
    J.-H. Yun, Y.C. Park, J. Kim, H.-J. Lee, W.A. Anderson, J. Park, Solution-processed germanium nanowire-positioned Schottky solar cells. Nanoscale Res. Lett. 6, 1–5 (2011). CrossRefGoogle Scholar
  8. 8.
    M.M. Adachi, M.P. Anantram, K.S. Karim, Core-shell silicon nanowire solar cells. Sci RepSci Rep. 3, 1546 (2013). CrossRefGoogle Scholar
  9. 9.
    X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, Q. Wang, Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel. Nanoscale Res. Lett. 7, 1–6 (2012). CrossRefGoogle Scholar
  10. 10.
    W. Sun, M. Brozak, J.C. Armstrong, J. Cui, Solar cell structures based on ZnO/CdS core-shell nanowire arrays embedded in Cu2ZnSnS4 light absorber, in 2013 I.E. 39th Photovoltaic. Specialists Conference PVSC, (2013), pp. 2042–2046Google Scholar
  11. 11.
    J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011). CrossRefGoogle Scholar
  12. 12.
    R. Salazar, A. Delamoreanu, C. Levy-Clement, V. Ivanova, ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells. Energy Procedia 10, 122–127 (2011). CrossRefGoogle Scholar
  13. 13.
    D. Caselli, C.Z. Ning, CdSe nanowire solar cells, in IEEE 39th Photovoltaic Specialists Conference PVSC 2013, (2013), pp. 0268–0270Google Scholar
  14. 14.
    S. Brittman, Y. Yoo, N.P. Dasgupta, S. Kim, B. Kim, P. Yang, Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. Nano Lett. 14, 4665–4670 (2014). CrossRefGoogle Scholar
  15. 15.
    B.D. Yuhas, P. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131, 3756–3761 (2009). CrossRefGoogle Scholar
  16. 16.
    S.S. Williams, M.J. Hampton, V. Gowrishankar, I.-K. Ding, J.L. Templeton, E.T. Samulski, J.M. DeSimone, M.D. McGehee, Nanostructured Titania−polymer photovoltaic devices made using PFPE-based Nanomolding techniques. Chem. Mater. 20, 5229–5234 (2008). CrossRefGoogle Scholar
  17. 17.
    K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett. 93, 63308 (2008). CrossRefGoogle Scholar
  18. 18.
    F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006). CrossRefGoogle Scholar
  19. 19.
    B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009). CrossRefGoogle Scholar
  20. 20.
    E.C. Garnett, P. Yang, Silicon nanowire radial p−n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008). CrossRefGoogle Scholar
  21. 21.
    E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010). CrossRefGoogle Scholar
  22. 22.
    Y. Lu, A. Lal, High-efficiency ordered silicon Nano-conical-frustum Array solar cells by self-powered parallel electron lithography. Nano Lett. 10, 4651–4656 (2010). CrossRefGoogle Scholar
  23. 23.
    D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11, 2704–2708 (2011). CrossRefGoogle Scholar
  24. 24.
    X. Yu, X. Shen, X. Mu, J. Zhang, B. Sun, L. Zeng, L. Yang, Y. Wu, H. He, D. Yang, High efficiency organic/silicon-nanowire hybrid solar cells: significance of strong inversion layer. Sci. Rep. 5, 17371 (2015). CrossRefGoogle Scholar
  25. 25.
    InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit | Science. Accessed 11 Apr 2016
  26. 26.
    I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Björk, L. Samuelson, A GaAs nanowire Array solar cell with 15.3 #x0025; efficiency at 1 sun. IEEE J Photovolt. 6, 185–190 (2016). CrossRefGoogle Scholar
  27. 27.
    Y. Cui, J. Wang, S.R. Plissard, A. Cavalli, V. TTT, R.P.J. van Veldhoven, L. Gao, M. Trainor, M.A. Verheijen, J.E.M. Haverkort, E.P.A.M. Bakkers, Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 13, 4113–4117 (2013). CrossRefGoogle Scholar
  28. 28.
    T.J. Kempa, J.F. Cahoon, S.-K. Kim, R.W. Day, D.C. Bell, H.-G. Park, C.M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. 109, 1407–1412 (2012)CrossRefGoogle Scholar
  29. 29.
    G. Jia, M. Steglich, I. Sill, F. Falk, Core–shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 96, 226–230 (2012). CrossRefGoogle Scholar
  30. 30.
    M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, C. Zhou, Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. Nano Lett. 15, 7217–7224 (2015). CrossRefGoogle Scholar
  31. 31.
    S. Wang, X. Yan, X. Zhang, J. Li, X. Ren, Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells. Nanoscale Res LettNanoscale Res Lett. 10, 269 (2015). CrossRefGoogle Scholar
  32. 32.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002)CrossRefGoogle Scholar
  33. 33.
    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002). CrossRefGoogle Scholar
  34. 34.
    J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003). CrossRefGoogle Scholar
  35. 35.
    M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004). CrossRefGoogle Scholar
  36. 36.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single Crystal growth. Appl. Phys. Lett. 4, 89 (1964). CrossRefGoogle Scholar
  37. 37.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). CrossRefGoogle Scholar
  38. 38.
    W. Lu, C.M. Lieber, Semiconductor nanowires. J Phys. Appl. Phys. 39, R387–R406 (2006). Google Scholar
  39. 39.
    L. Cao, B. Garipcan, J.S. Atchison, C. Ni, B. Nabet, J.E. Spanier, Instability and transport of metal catalyst in the growth of tapered silicon nanowires. Nano Lett. 6, 1852–1857 (2006). CrossRefGoogle Scholar
  40. 40.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004). CrossRefGoogle Scholar
  41. 41.
    A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004). CrossRefGoogle Scholar
  42. 42.
    D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432–2434 (2003). CrossRefGoogle Scholar
  43. 43.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review: in memory of prof. Ulrich Gösele. Adv. Mater. 23, 285–308 (2011). CrossRefGoogle Scholar
  44. 44.
    C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta. 53, 5509–5516 (2008). CrossRefGoogle Scholar
  45. 45.
    T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008). CrossRefGoogle Scholar
  46. 46.
    Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004). CrossRefGoogle Scholar
  47. 47.
    A. Dalmau Mallorquí, F.M. Epple, D. Fan, O. Demichel, i. Fontcuberta, A. Morral, Effect of the pn junction engineering on Si microwire-array solar cells. Phys Status Solidi A. 209, 1588–1591 (2012). CrossRefGoogle Scholar
  48. 48.
    E.C. Garnett, Y.-C. Tseng, D.R. Khanal, J. Wu, J. Bokor, P. Yang, Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 4, 311–314 (2009). CrossRefGoogle Scholar
  49. 49.
    D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, L.J. Lauhon, Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat. Nanotechnol. 4, 315–319 (2009). CrossRefGoogle Scholar
  50. 50.
    E. Koren, N. Berkovitch, Y. Rosenwaks, Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163–1167 (2010). CrossRefGoogle Scholar
  51. 51.
    J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High-resolution detection of au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008). CrossRefGoogle Scholar
  52. 52.
    G. Li, H. Li, J.Y.L. Ho, M. Wong, H.S. Kwok, Nanopyramid structure for ultrathin c-Si tandem solar cells. Nano Lett. 14, 2563–2568 (2014). CrossRefGoogle Scholar
  53. 53.
    C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, Y. Cui, High-efficiency amorphous silicon solar cell on a periodic Nanocone back reflector. Adv. Energy Mater. 2, 628–633 (2012). CrossRefGoogle Scholar
  54. 54.
    Z. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009). CrossRefGoogle Scholar
  55. 55.
    G. Li, J.Y.L. Ho, H. Li, H.-S. Kwok, Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells. Appl. Phys. Lett. 104, 231113 (2014). CrossRefGoogle Scholar
  56. 56.
    J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and Nanocone arrays. Nano Lett. 9, 279–282 (2009). CrossRefGoogle Scholar
  57. 57.
    J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, J.-H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express. 18, A286–A292 (2010)CrossRefGoogle Scholar
  58. 58.
    H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotechnol. 10, 624–628 (2015). CrossRefGoogle Scholar
  59. 59.
    E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Devices 29, 300–305 (1982). CrossRefGoogle Scholar
  60. 60.
    O.L. Muskens, S.L. Diedenhofen, B.C. Kaas, R.E. Algra, E.P.A.M. Bakkers, J. Gómez Rivas, A. Lagendijk, Large photonic strength of highly tunable resonant nanowire materials. Nano Lett. 9, 930–934 (2009). CrossRefGoogle Scholar
  61. 61.
    L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). CrossRefGoogle Scholar
  62. 62.
    S.-K. Kim, X. Zhang, D.J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, J.F. Cahoon, Doubling absorption in nanowire solar cells with dielectric Shell optical antennas. Nano Lett. 15, 753–758 (2015). CrossRefGoogle Scholar
  63. 63.
    T. Voss, G.T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, F. Marlow, High-order waveguide modes in ZnO nanowires. Nano Lett. 7, 3675–3680 (2007). CrossRefGoogle Scholar
  64. 64.
    S.-K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.-D. Song, H.-G. Park, C.M. Lieber, Tuning light absorption in Core/Shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012). CrossRefGoogle Scholar
  65. 65.
    Z. Wu, J.B. Neaton, J.C. Grossman, Quantum confinement and electronic properties of tapered silicon nanowires. Phys. Rev. Lett. 100, 246804 (2008). CrossRefGoogle Scholar
  66. 66.
    Z. Wu, J.B. Neaton, J.C. Grossman, Charge separation via strain in silicon nanowires. Nano Lett. 9, 2418–2422 (2009). CrossRefGoogle Scholar
  67. 67.
    Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009). CrossRefGoogle Scholar
  68. 68.
    Y. Dan, K. Seo, K. Takei, J.H. Meza, A. Javey, K.B. Crozier, Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 11, 2527–2532 (2011). CrossRefGoogle Scholar
  69. 69.
    M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W. Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics. Energy Environ. Sci. 4, 866 (2011). CrossRefGoogle Scholar
  70. 70.
    X. Yan, C. Zhang, J. Wang, X. Zhang, X. Ren, A high-efficiency Si nanowire Array/Perovskite hybrid solar cell. Nanoscale Res. Lett. 12, 1.14 (2017). CrossRefGoogle Scholar
  71. 71.
    Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, Y.M. Habib, Fabrication and electrical properties of Si nanowires synthesized by al catalyzed vapor−liquid−solid growth. Nano Lett. 9, 4494–4499 (2009). CrossRefGoogle Scholar
  72. 72.
    N. Anttu, Shockley–Queisser detailed balance efficiency limit for nanowire solar cells. ACS Photonics. 2, 446–453 (2015). CrossRefGoogle Scholar
  73. 73.
    Y. Xu, T. Gong, J.N. Munday, The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015). CrossRefGoogle Scholar
  74. 74.
    X. Wang, M.R. Khan, M. Lundstrom, P. Bermel, Performance-limiting factors for GaAs-based single nanowire photovoltaics. Opt. Express 22, A344 (2014). CrossRefGoogle Scholar
  75. 75.
    X. Zhai, S. Wu, A. Shang, X. Li, Limiting efficiency calculation of silicon single-nanowire solar cells with considering auger recombination. Appl. Phys. Lett. 106, 63904 (2015). CrossRefGoogle Scholar
  76. 76.
    U. Rau, U.W. Paetzold, T. Kirchartz, Thermodynamics of light management in photovoltaic devices. Phys. Rev. B. 90, 35211 (2014). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.College of Electronic Science and Technology, Shenzhen UniversityShenzhenChina
  2. 2.Department of Electronic & Computer Engineering, The Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations