Effective Light Management in Thin Silicon Wafers



Crystalline silicon (c-Si)-based photovoltaics have dominated the global market share over the past decade. To progress toward utility-scale adoption, cost reduction plans are necessary, in which one option is to reduce the silicon material used. This comes at a cost of lower photo-absorption and generation, particularly for near-infrared photons due to their much higher absorption depth as compared to short-wavelength photons. In this chapter, the different methods to enhance light trapping for near-infrared photons are mentioned, and in particular the methodology on the proper design of a one-dimensional conductive distributed Bragg reflector (DBR) scheme is introduced. Both experimental and simulation results in this chapter consistently demonstrate the feasibility of integrating a conductive DBR scheme at the rear of a heterojunction silicon wafer solar cell (a type of c-Si-based photovoltaics technology) for enhanced photo-generation at the target long-wavelength regions (i.e., 900 ± 200 nm). The methodology presented here can be easily extended to other target wavelengths of interest and also not limited to solar cells applications alone.


Distributed Bragg reflectors Light trapping Silicon solar cells 


  1. 1.
    S.W. Glunz, R. Preu, D. Biro, in Comprehensive Renewable Energy, ed. by A. Sayigh (Elsevier, Oxford, 2012), pp. 353–387Google Scholar
  2. 2.
    D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D.B. Needleman, T. Buonassisi, Energ. Environ. Sci. 5, 5874–5883 (2012)CrossRefGoogle Scholar
  3. 3.
    M.A. Green, M.J. Keevers, Prog. Photovolt. Res. Appl. 3, 189–192 (1995)CrossRefGoogle Scholar
  4. 4.
    M.A. Green, High Efficiency Silicon Solar Cells, 1st edn. (Trans Tech Publications, Zürich, 1987), pp. 1–240Google Scholar
  5. 5.
    C. Heine, R.H. Morf, Appl. Optics 34, 2476–2482 (1995)CrossRefGoogle Scholar
  6. 6.
    C. Eisele, C.E. Nebel, M. Stutzmann, J. Appl. Phys. 89, 7722–7726 (2001)CrossRefGoogle Scholar
  7. 7.
    F. Llopis, I. Tobías, Sol. Energy Mater. Sol. Cells 87, 481–492 (2005)CrossRefGoogle Scholar
  8. 8.
    C.-H. Chang, J.A. Dominguez-Caballero, H.J. Choi, G. Barbastathis, Opt. Lett. 36, 2354–2356 (2011)CrossRefGoogle Scholar
  9. 9.
    W.J. Nam, L. Ji, V.V. Varadan, S.J. Fonash, J. Appl. Phys. 111, 123103 (2012)CrossRefGoogle Scholar
  10. 10.
    W.J. Nam, D. Fischer, Z. Gray, N. Nguyen, L. Ji, D. Neidich, S.J. Fonash, IEEE J. Photovoltaics 5, 28–32 (2015)CrossRefGoogle Scholar
  11. 11.
    W. J. Nam, S. J. Fonash, L. Ji, V. V. Varadan, in 2012 38th IEEE Photovoltaic Specialists Conference, 3–8 June 2012Google Scholar
  12. 12.
    S.J. Fonash, Light Trapping in Solar Cell and Photo-Detector Devices (Academic Press, Boston, 2015), pp. 33–48CrossRefGoogle Scholar
  13. 13.
    P. Mandal, S. Sharma, Renew. Sustain. Energy Rev. 65, 537–552 (2016)CrossRefGoogle Scholar
  14. 14.
    K.R. Catchpole, A. Polman, Opt. Express 16, 21793–21800 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Heidarzadeh, A. Rostami, M. Dolatyari, G. Rostami, Appl. Optics 55, 1779–1785 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim, Chem. Rev. 116, 14982–15034 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Cid, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, Surf. Coat. Technol. 106, 117–120 (1998)CrossRefGoogle Scholar
  18. 18.
    N. Sahouane, A. Zerga, Energy Procedia 44, 118–125 (2014)CrossRefGoogle Scholar
  19. 19.
    E. Yablonovich, G.D. Cody, IEEE Trans. Elect. Dev. ED-29, 300–305 (1982)CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    S. Solntsev, O. Isabella, D. Caratelli, M. Zeman, IEEE J. Photovoltaics 3, 46–52 (2013)CrossRefGoogle Scholar
  23. 23.
    O. Isabella, A. Campa, M. Heijna, W. J. Soppe, R. v. Erven, R. H. Franken, H. Borg, M. Zeman, in 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, SpainGoogle Scholar
  24. 24.
    S. Solntsev, M. Zeman, Energy Procedia 10, 308–312 (2011)CrossRefGoogle Scholar
  25. 25.
    Z. Yu, A. Raman, S. Fan, Opt. Express 18, A366–A380 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Appl. Phys. Lett. 89, 111111–111113 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L.C. Kimerling, Appl. Phys. Lett. 93, 221105–221103 (2008)CrossRefGoogle Scholar
  28. 28.
    M.B.H. Breese, D. Mangaiyarkarasi, Opt. Express 15, 5537–5542 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Diener, N. Kunzner, D. Kovalev, E. Gross, V.Y. Timoshenko, G. Polisski, F. Koch, Appl. Phys. Lett. 78, 3887–3889 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Jiang, A. Zakutayev, J. Stowers, M.D. Anderson, J. Tate, D.H. McIntyre, D.C. Johnson, D.A. Keszler, Solid State Sci. 11, 1692–1699 (2009)CrossRefGoogle Scholar
  31. 31.
    S.-H. Park, D.-H. Lee, C.-S. Kim, H.-D. Jeong, Jpn. J. Appl. Phys 50 4, 012503–012503 (2011)CrossRefGoogle Scholar
  32. 32.
    L. Cheng-Chung, L. Meng-Chi, C. Sheng-Hui, K. Chien-Cheng, Jpn. J. Appl. Phys. 51, 052602 (2012)CrossRefGoogle Scholar
  33. 33.
    W.C. Tien, A.K. Chu, Sol. Energy Mater. Sol. Cells 120(A), 18–22 (2014)CrossRefGoogle Scholar
  34. 34.
    M.F. Schubert, J.K. Kim, S. Chhajed, E.F. Schubert, in Thin-Film Coatings for Optical Applications IV, San Diego, 26 August 2007Google Scholar
  35. 35.
    M.F. Schubert, J.-Q. Xi, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 90, 141115 (2007)CrossRefGoogle Scholar
  36. 36.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, New York, 2008), pp. 44–65Google Scholar
  37. 37.
    Z.P. Ling, T. Mueller, A.G. Aberle, R. Stangl, IEEE J. Photovoltaics 4, 1320–1325 (2014)CrossRefGoogle Scholar
  38. 38.
    C.J.R. Sheppard, Pure Appl. Opt. 4, 665–669 (1995)CrossRefGoogle Scholar
  39. 39.
    A. Jaffer. (2010). The freesnell thin-film optical simulator. Available:
  40. 40.
    W. Theiss. (2008). CODE. Available:
  41. 41.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999), pp. 1–986CrossRefGoogle Scholar
  42. 42.
    Z.P. Ling, J. Ge, R. Stangl, A. Aberle, T. Mueller, J. Mater. Sci.Chem. Eng. 1, 1–14 (2013)Google Scholar
  43. 43.
    M. Zeman, D. Zhang, in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, ed. by W. G. J. H. M. v. Sark, L. Korte, F. Roca (Springer, Berlin/Heidelberg, 2012), pp. 13–43Google Scholar
  44. 44.
    W. Luft, Y.S. Tsuo, Hydrogenated amorphous silicon alloy deposition processes, 1st edn. (Marcel Dekker, Inc, Colorado, 1993), pp. 1–344Google Scholar
  45. 45.
    W.C. Tien, A.K. Chu, Opt. Express 22, 3944–3949 (2014)CrossRefGoogle Scholar
  46. 46.
    U. Manna, J. Yoo, S.K. Dhungel, M. Gowtham, U. Gangopadhyay, K. Kim, J. Yi, J. Korean Phys. Soc. 46, 1378–1382 (2005)Google Scholar
  47. 47.
    Z.P. Ling, Design, fabrication and characterisation of thin-film materials for heterojunction silicon wafer solar cells, PhD Thesis, National University of Singapore, Singapore, 2014Google Scholar
  48. 48.
    Z.P. Ling, S. Duttagupta, F. Ma, T. Mueller, A.G. Aberle, R. Stangl, AIP Adv. 5, 077124 (2015)CrossRefGoogle Scholar
  49. 49.
    G.F. Burkhard, E.T. Hoke, Transfer Matrix Optical Modeling (2010). publisher: McGehee Group
  50. 50.
    G.F. Burkhard, E.T. Hoke, M.D. McGehee, Adv. Mater. 22, 3293–3297 (2010)CrossRefGoogle Scholar
  51. 51.
    T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18–21 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Electrical & Computer Engineering, National University of SingaporeSolar Energy Research Institute of SingaporeSingaporeSingapore

Personalised recommendations