Skip to main content

Pressure Data and Multi-material Approach to Design Prosthesis

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 665))

Abstract

This paper concerns the design and manufacture of medical devices, such as lower limb prosthesis, integrating low cost industrial technologies. In particular, it focuses the attention on the custom-fit component of a lower limb prosthesis, i.e., the socket, that is the interface with the residual limb. The considered process starts from the 3D reconstruction of patients’ limb and ends with the manufacture of the socket with a 3D printer using a multi-material approach. The process counts three steps: 3D modeling, testing (both experimental and numerical) and manufacturing. For each step adopted solutions and tools are described. Finally, conclusions are drawn mainly concerning the challenge of multi-material 3D printing of the socket.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colombo, G., Regazzoni, D., Rizzi, C.: Ergonomic design through virtual humans. Comput. Aided Des. Appl. 10(5), 745–755 (2013). doi:10.3722/cadaps.2013.745-755

  2. Colombo, G., Facoetti, G., Rizzi, C., Vitali, A.: Low cost hand-tracking devices to design customized medical devices. In: Shumaker, R., Lackey, S. (eds.) VAMR 2015. LNCS, vol. 9179, pp. 351–360. Springer, Cham (2015). doi:10.1007/978-3-319-21067-4_36

    Chapter  Google Scholar 

  3. Wasenmüller, O., Peters, J.C., Golyanik, V., Stricker, D.: Precise and automatic anthropometric measurement extraction using template registration. In: 6th International Conference on 3D Body Scanning Technologies, Lugano (2015). doi:10.15221/15.155

  4. Salmi, M.: Medical applications of additive manufacturing in surgery and dental care. Ph.D. thesis, Aalto University, Helsinki (2013)

    Google Scholar 

  5. Wang, C.C.L.: CAD tools in fashion/garment design. Comput. Aided Des. Appl. 1(1–4), 53–62 (2004). doi:10.1080/16864360.2004.10738243

    Article  Google Scholar 

  6. Wang, C.H.; Chiang, Y.C., Wang, M.J.: Evaluation of an augmented reality embedded on-line shopping system. In: 6th International Conference on Applied Human Factors and Ergonomics, vol. 3, pp. 5624–5630. doi:10.1016/j.promfg.2015.07.766

  7. Fontana, M., Rizzi, C., Cugini, U.: A CAD-oriented cloth simulation system with stable and efficient ODE solution. Comput. Graph. (Pergamon). 30(3), 391–407 (2006). doi:10.1016/j.cag.2006.02.002

    Article  Google Scholar 

  8. Comotti, C., Regazzoni, D., Rizzi, C., Vitali, A.: Multi-material design and 3D printing method of lower limb prosthetic sockets. In: Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 42–45. ACM (2015). doi:10.1145/2838944.2838955

  9. Singh, U.: Role of cad-cam technology in prosthetics and orthotics. In: Essentials of Prosthetics and Orthotics, p. 86 (2013)

    Google Scholar 

  10. Buzzi, M., Colombo, G., Facoetti, G., Gabbiadini, S., Rizzi, C.: 3D modelling and knowledge: tools to automate prosthesis development process. Int. J. Interact. Des. Manuf. 6, 41–53 (2012). doi:10.1007/s12008-011-0137-5

    Article  Google Scholar 

  11. Colombo, G., Facoetti, G., Rizzi, C., Vitali, A., Zanello, A.: Automatic 3D reconstruction of transfemoral residual limb from MRI images. In: Duffy, V.G. (ed.) DHM 2013. LNCS, vol. 8026, pp. 324–332. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39182-8_38

    Chapter  Google Scholar 

  12. Polliack, A.A., Sieh, R.C., Craig, D.D., Landsberger, S., McNeil, D.R., Ayyappa, E.: Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthet. Orthot. Int. 24(1), 63–73 (2000). doi:10.1080/03093640008726523

    Article  Google Scholar 

  13. Skanect software. http://skanect.occipital.com/

  14. Sengeh, D., Herr, H.: A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J. Prosthet. Orthotics 25(3), 129–137 (2013). doi:10.1097/JPO.0b013e31829be19c

    Article  Google Scholar 

  15. Lee, W.C., Zhang, M., Mak, A.F.: Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Arch. Phys. Med. Rehabil. 86(4), 641–649 (2005)

    Article  Google Scholar 

  16. Dumbleton, T., Buis, A.W.P., Mcfadyen, A., Mchugh, B.F., Mckay, G., Murray, K.D., Sexton, S.: Dynamic interface pressure distributions of two transtibial prosthetic socket concepts. J. Rehabil. Res. Dev. 46(3), 405–415 (2009)

    Article  Google Scholar 

  17. Aherwar, A., Singh, A., Patnaik, A.: A review paper on rapid prototyping and rapid tooling techniques for fabrication of prosthetic socket, pp. 345–353 (2014)

    Google Scholar 

  18. FDM by Stratasys. http://www.stratasys.com/3d-printers/technologies/fdm-technology

  19. FFF by RepRap. http://reprap.org/wiki/Fused_filament_fabrication

  20. Shi, Z., Peng, Y., Wei, W.: Recent advance on fused deposition modeling. Recent Patents Mech. Eng. 7(2), 122–130 (2014). doi:10.2174/2212797607666140515231742

    Article  Google Scholar 

  21. Rodriguez, J., Thomas, J.P., Renaud, J.E.: Mechanical behavior of acrylonitrile butadiene styrene (abs) fused deposition materials. Experimental investigation. Rapid Prototyping J. 7(3), 148–158 (2001). doi:10.1108/13552540110395547

  22. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., Gross, M.: Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34(4), Article 136 (2015). doi:10.1145/2766926

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Rizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Comotti, C., Regazzoni, D., Rizzi, C., Vitali, A. (2017). Pressure Data and Multi-material Approach to Design Prosthesis. In: Fardoun, H., R. Penichet, V., Alghazzawi, D., De la Guia, M. (eds) ICTs for Improving Patients Rehabilitation Research Techniques. REHAB 2015. Communications in Computer and Information Science, vol 665. Springer, Cham. https://doi.org/10.1007/978-3-319-69694-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69694-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69693-5

  • Online ISBN: 978-3-319-69694-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics