Skip to main content

Omics and Systems Biology: Integration of Production and Omics Data in Systems Biology

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology

Abstract

Omics technologies have become of mainstream use in the study of farm animals, to better understand the physiology of the animal and the quality of the products produced by those animals. Such studies can be done at the level of genes, transcripts, proteins and/or metabolites. An important aspect of doing such omics studies is understanding of variation. For example, in relation to parity, lactation, feeding status and animal health, variation can happen in transcripts, proteins or metabolites found in farm animals and the products produced. This variation can help in better understanding the physiology of the animal. Also variation between individual animals exists, which may assist in better understanding of the animal’s physiology. One limitation of the majority of the studies in this area is that they are performed using one specific omics technology. Integrating omics data captured using multiple omics technologies, using a systems biology approach, can shed more light on the biochemistry of the farm animal’s physiology. At the end of this chapter, the outlook on such studies and the (software) developments that would be needed for optimal integration of omics data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CN:

Casein

DGAT1:

Diglyceride acyltransferase 1

DNA:

Deoxyribonucleic acid

GWAS:

Genome-wide association study

IgA:

Immunoglobulin A

miRNA:

MicroRNA

mRNA:

Messenger RNA

RNA:

Ribonucleic acid

RNA-seq:

RNA sequencing

SNP:

Single nucleotide polymorphisms

References

  • Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Alstrup L, Soegaard K, Weisbjerg MR (2016) Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows. J Dairy Sci 99(1):328–340

    Article  CAS  PubMed  Google Scholar 

  • Antunes-Fernandes EC, van Gastelen S, Dijkstra J, Hettinga KA, Vervoort J (2016) Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. J Dairy Sci 99(8):6251–6262

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Zheng Z, Liu B, Ji X, Bai Y, Zhang W (2016) Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data. BMC Genomics 17(Suppl 7):512

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellay J, Michaut M, Kim T, Han S, Colak R, Myers CL, Kim PM (2012) An omics perspective of protein disorder. Mol BioSyst 8(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics—a review. J Proteomics 74(3):282–293

    Article  CAS  PubMed  Google Scholar 

  • Benmoussa A, Lee CH, Laffont B, Savard P, Laugier J, Boilard E, Gilbert C, Fliss I, Provost P (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr 146(11):2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Bernabucci U, Basirico L, Morera P, Dipasquale D, Vitali A, Piccioli Cappelli F, Calamari L (2015) Effect of summer season on milk protein fractions in Holstein cows. J Dairy Sci 98(3):1815–1827

    Article  CAS  PubMed  Google Scholar 

  • Bionaz M, Loor JJ (2008) Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Bionaz M, Loor JJ (2011) Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform Biol Insights 5:83–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehmer JL (2011) Proteomic analyses of host and pathogen responses during bovine mastitis. J Mammary Gland Biol Neoplasia 16(4):323–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehmer JL, Ward JL, Peters RR, Shefcheck KJ, McFarland MA, Bannerman DD (2010) Proteomic analysis of the temporal expression of bovine milk proteins during coliform mastitis and label-free relative quantification. J Dairy Sci 93(2):593–603

    Article  CAS  PubMed  Google Scholar 

  • Boggs I, Hine B, Smolenksi G, Hettinga K, Zhang L, Wheeler TT (2016) Proteomics data in support of the quantification of the changes of bovine milk proteins during mammary gland involution. Data Brief 8:52–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Boggs I, Hine B, Smolenski G, Hettinga K, Zhang L, Wheeler TT (2015) Changes in the repertoire of bovine milk proteins during mammary involution. EuPA Open Proteom 9:65–75

    Article  CAS  Google Scholar 

  • Buitenhuis B, Poulsen NA, Gebreyesus G, Larsen LB (2016) Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle. BMC Genet 17:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Buitenhuis B, Røntved CM, Edwards SM, Ingvartsen KL, Sørensen P (2011) In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis. BMC Genomics 12(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Santos P, Laborde CM, Diaz-Pena R (2015) Genomics, proteomics and metabolomics: their emerging roles in the discovery and validation of rheumatoid arthritis biomarkers. Clin Exp Rheumatol 33(2):279–286

    PubMed  Google Scholar 

  • Connor EE, Siferd S, Elsasser TH, Evock-Clover CM, Van Tassell CP, Sonstegard TS, Fernandes VM, Capuco AV (2008) Effects of increased milking frequency on gene expression in the bovine mammary gland. BMC Genomics 9:362. https://doi.org/10.1186/1471-2164-9-362

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro A, Zolla L (2013) Meat science: from proteomics to integrated omics towards system biology. J Proteomics 78:558–577

    Article  PubMed  Google Scholar 

  • D’Alessandro A, Zolla L, Scaloni A (2011) The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Mol BioSyst 7(3):579–597

    Article  PubMed  Google Scholar 

  • D’Auria E, Agostoni C, Giovannini M, Riva E, Zetterstrom R, Fortin R, Greppi GF, Bonizzi L, Roncada P (2005) Proteomic evaluation of milk from different mammalian species as a substitute for breast milk. Acta Paediatrica (Oslo, Norway: 1992) 94(12):1708–1713

    Article  Google Scholar 

  • Davidsen PK, Turan N, Egginton S, Falciani F (2016) Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective. J Appl Physiol (Bethesda, Md: 1985) 120(3):297–309

    Article  CAS  Google Scholar 

  • Dimitrieva S, Schlapbach R, Rehrauer H (2016) Prognostic value of cross-omics screening for kidney clear cell renal cancer survival. Biol Direct 11(1):68. https://doi.org/10.1186/s13062-016-0170-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchemin S, Bovenhuis H, Stoop WM, Bouwman AC, van Arendonk JAM, Visker MHPW (2013) Genetic correlation between composition of bovine milk fat in winter and summer, and DGAT1 and SCD1 by season interactions. J Dairy Sci 96(1):592–604

    Article  CAS  PubMed  Google Scholar 

  • Duchemin SI, Visker MH, Van Arendonk JA, Bovenhuis H (2014) A quantitative trait locus on Bos taurus autosome 17 explains a large proportion of the genetic variation in de novo synthesized milk fatty acids. J Dairy Sci 97(11):7276–7285

    Article  CAS  PubMed  Google Scholar 

  • Gerspach C, Imhasly S, Gubler M, Naegeli H, Ruetten M, Laczko E (2017) Altered plasma lipidome profile of dairy cows with fatty liver disease. Res Vet Sci 110:47–59

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Heck JM, Schennink A, van Valenberg HJ, Bovenhuis H, Visker MH, van Arendonk JA, van Hooijdonk AC (2009) Effects of milk protein variants on the protein composition of bovine milk. J Dairy Sci 92(3):1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, Vervoort J (2011) The host defense proteome of human and bovine milk. PLoS ONE 6(4):e19433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz K, O’Connor PM, O’Brien B, Huppertz T, Ross RP, Kelly AL (2012) Proteomic study of proteolysis during ripening of Cheddar cheese made from milk over a lactation cycle. J Dairy Res 79(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Hollung K, Timperio AM, Olivan M, Kemp C, Coto-Montes A, Sierra V, Zolla L (2014) Systems biology: a new tool for farm animal science. Curr Protein Pept Sci 15(2):100–117

    Article  CAS  PubMed  Google Scholar 

  • Ibeagha-Awemu EM, Li R, Ammah AA, Dudemaine PL, Bissonnette N, Benchaar C, Zhao X (2016a) Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics 17:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibeagha-Awemu EM, Peters SO, Akwanji KA, Imumorin IG, Zhao X (2016b) High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci Rep 6:31109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannidis J, Donadeu FX (2016) Circulating microRNA Profiles during the Bovine Oestrous Cycle. PLoS ONE 11(6):e0158160

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneene JB, Scott Hurd H (1990) The national animal health monitoring system in Michigan. III. Cost estimates of selected dairy cattle diseases. Prev Vet Med 8(2):127–140

    Article  Google Scholar 

  • Khan MJ, Jacometo CB, Riboni MV, Trevisi E, Graugnard DE, Correa MN, Loor JJ (2015) Stress and inflammatory gene networks in bovine liver are altered by plane of dietary energy during late pregnancy. Funct Integr Genomics 15(5):563–576

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jhong JH, Lee J, Koo JY (2017) Meta-analytic support vector machine for integrating multiple omics data. BioData Mining 10:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ (2016) microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. J Allergy Clin Immunol 137(6):1893–1895.e1813

    Article  CAS  PubMed  Google Scholar 

  • Korhonen HJ (2009) Bioactive components in bovine milk. In: Bioactive components in milk and dairy products. Wiley-Blackwell, Ames, IA, pp 13–42

    Chapter  Google Scholar 

  • Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Kussmann M, Blum S (2007) OMICS-derived targets for inflammatory gut disorders: opportunities for the development of nutrition related biomarkers. Endocr Metab Immune Disord Drug Targets 7(4):271–287

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhao Y, Zhu D, Pang X, Liu Y, Frew R, Chen G (2017) Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-exactive orbitrap mass spectrometry. Food Chem 224:302–309

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hosseini A, Danes M, Jacometo C, Liu J, Loor JJ (2016) Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. J Animal Sci Biotechnol 7:44

    Article  CAS  Google Scholar 

  • Lu J, Antunes Fernandes E, Paez Cano AE, Vinitwatanakhun J, Boeren S, van Hooijdonk T, van Knegsel A, Vervoort J, Hettinga KA (2013) Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. J Proteome Res 12(7):3288–3296

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Boeren S, van Hooijdonk T, Vervoort J, Hettinga K (2015) Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. J Dairy Sci 98(5):3460–3469

    Article  CAS  PubMed  Google Scholar 

  • Lu J, van Hooijdonk T, Boeren S, Vervoort J, Hettinga K (2014) Identification of lipid synthesis and secretion proteins in bovine milk. J Dairy Res 81(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Mach N, Blum Y, Bannink A, Causeur D, Houee-Bigot M, Lagarrigue S, Smits MA (2012) Pleiotropic effects of polymorphism of the gene diacylglycerol-O-transferase 1 (DGAT1) in the mammary gland tissue of dairy cows. J Dairy Sci 95(9):4989–5000

    Article  CAS  PubMed  Google Scholar 

  • McCoard SA, Hayashi AA, Sciascia Q, Rounce J, Sinclair B, McNabb WC, Roy NC (2016) Mammary transcriptome analysis of lactating dairy cows following administration of bovine growth hormone. Animal 10(12):2008–2017

    Article  CAS  PubMed  Google Scholar 

  • Mehta SM, Banerjee SM, Chowdhary AS (2015) Postgenomics biomarkers for rabies-the next decade of proteomics. OMICS 19(2):67–79

    Article  CAS  PubMed  Google Scholar 

  • Moran B, Cummins SB, Creevey CJ, Butler ST (2016) Transcriptomics of liver and muscle in Holstein cows genetically divergent for fertility highlight differences in nutrient partitioning and inflammation processes. BMC Genomics 17(1):603

    Article  PubMed  PubMed Central  Google Scholar 

  • Morzel M, Chambon C, Lefevre F, Paboeuf G, Laville E (2006) Modifications of trout (Oncorhynchus mykiss) muscle proteins by preslaughter activity. J Agric Food Chem 54(8):2997–3001

    Article  CAS  PubMed  Google Scholar 

  • Mullen AM, Stapleton PC, Corcoran D, Hamill RM, White A (2006) Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci 74(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Ng-Kwai-Hang KF, Hayes JF, Moxley JE, Monardes HG (1987) Variation in milk protein concentrations associated with genetic polymorphism and environmental factors. J Dairy Sci 70(3):563–570

    Article  CAS  PubMed  Google Scholar 

  • Nir Markusfeld O (2003) What are production diseases, and how do we manage them? Acta Vet Scand Suppl 98:21–32

    Article  PubMed  Google Scholar 

  • Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A (2012) “Muscle to meat” molecular events and technological transformations: the proteomics insight. J Proteomics 75(14):4275–4289

    Article  CAS  PubMed  Google Scholar 

  • Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM (2013) Muscle and meat: new horizons and applications for proteomics on a farm to fork perspective. J Proteomics 88:58–82

    Article  CAS  PubMed  Google Scholar 

  • Perge P, Nagy Z, Decmann A, Igaz I, Igaz P (2016) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol 14:1–11

    Google Scholar 

  • Poulsen NA, Jensen HB, Larsen LB (2016) Factors influencing degree of glycosylation and phosphorylation of caseins in individual cow milk samples. J Dairy Sci 99(5):3325–3333

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Zhao A, Zhang Y, Chen T, Zeisel SH, Jia W, Cai W (2016) Metabolomic approaches to explore chemical diversity of human breast-milk, formula milk and bovine milk. Int J Mol Sci 17(12):2128

    Article  PubMed Central  Google Scholar 

  • Rodrigues PM, Silva TS, Dias J, Jessen F (2012) PROTEOMICS in aquaculture: applications and trends. J Proteomics 75(14):4325–4345

    Article  CAS  PubMed  Google Scholar 

  • Salilew-Wondim D, Ibrahim S, Gebremedhn S, Tesfaye D, Heppelmann M, Bollwein H, Pfarrer C, Tholen E, Neuhoff C, Schellander K, Hoelker M (2016) Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics 17:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Samková E, Spicka J, Pesek M, Pelikánová T, Hanus O (2012) Animal factors affecting fatty acid composition of cow milk fat: a review. S Afr J Anim Sci 42:83–100

    Google Scholar 

  • Sanchez-Macias D, Moreno-Indias I, Castro N, Morales-Delanuez A, Arguello A (2014) From goat colostrum to milk: physical, chemical, and immune evolution from partum to 90 days postpartum. J Dairy Sci 97(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Schennink A, Bovenhuis H, Leon-Kloosterziel KM, van Arendonk JA, Visker MH (2009) Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim Genet 40(6):909–916

    Article  CAS  PubMed  Google Scholar 

  • Schennink A, Stoop WM, Visker MH, Heck JM, Bovenhuis H, van der Poel JJ, van Valenberg HJ, van Arendonk JA (2007) DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim Genet 38(5):467–473

    Article  CAS  PubMed  Google Scholar 

  • Seeree P, Pearngam P, Kumkate S, Janvilisri T (2015) An omics perspective on molecular biomarkers for diagnosis, prognosis, and therapeutics of cholangiocarcinoma. Int J Genomics 2015:179528

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo S, Larkin DM, Loor JJ (2013) Cattle genomics and its implications for future nutritional strategies for dairy cattle. Animal 7(Suppl 1):172–183

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Zhang L, Lian C, Lu C, Zhang Y, Pan Q, Yang R, Zhao Z (2016) Deep sequencing and screening of differentially expressed MicroRNAs related to milk fat metabolism in bovine primary mammary epithelial cells. Int J Mol Sci 17(2):200

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Shi S, Tong H, Guo Y, Zou J (2014) Metabolomics analysis reveals that bile acids and phospholipids contribute to variable responses to low-temperature-induced ascites syndrome. Mol BioSyst 10(6):1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Erdman RA, Swanson KM, Molenaar AJ, Maqbool NJ, Wheeler TT, Arias JA, Quinn-Walsh EC, Stelwagen K (2010) Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia 15(1):101–112

    Article  PubMed  Google Scholar 

  • Singh K, Molenaar AJ, Swanson KM, Gudex B, Arias JA, Erdman RA, Stelwagen K (2012) Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. Animal 6(3):375–381

    Article  CAS  PubMed  Google Scholar 

  • Sokol E, Ulven T, Færgeman NJ, Ejsing CS (2015) Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL. Eur J Lipid Sci Technol 117(6):751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT (2009) Immune components of bovine colostrum and milk. J Anim Sci 87(13 Suppl):3–9

    Article  CAS  PubMed  Google Scholar 

  • Sundekilde UK, Larsen LB, Bertram HC (2013) NMR-based milk metabolomics. Metabolites 3(2):204–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suravajhala P, Kogelman LJA, Kadarmideen HN (2016) Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol 48(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas FC, Mudaliar M, Tassi R, McNeilly TN, Burchmore R, Burgess K, Herzyk P, Zadoks RN, Eckersall PD (2016) Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 3. Untargeted metabolomics. Mol BioSyst 12(9):2762–2769

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep 6:24208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiplakou E, Zervas G (2013) Changes in milk and plasma fatty acid profile in response to fish and soybean oil supplementation in dairy sheep. J Dairy Res 80(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Wall EH, Bond JP, McFadden TB (2013) Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression. BMC Genomics 14:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Byun J, Pennathur S (2010) Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol 30(5):500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenburg D, Melzer N, Willmitzer L, Lisec J, Kesting U, Reinsch N, Repsilber D (2013) Milk metabolites and their genetic variability. J Dairy Sci 96(4):2557–2569

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zerbe H, Petzl W, Brunner RM, Gunther J, Draing C, von Aulock S, Schuberth HJ, Seyfert HM (2008) Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol 45(5):1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Yang J, Zhao S, Li S, Guo T, Zang C, Wang J (2016) Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J Proteomics 136:174–182

    Article  CAS  PubMed  Google Scholar 

  • Yang YX, Zhao XX, Zhang Y (2009) Proteomic analysis of mammary tissues from healthy cows and clinical mastitic cows for identification of disease-related proteins. Vet Res Commun 33(4):295–303

    Article  PubMed  Google Scholar 

  • Yangilar F (2013) As a potentially functional food: goats’ milk and products. J Food Nutr Res 1(4):68–81

    Google Scholar 

  • Younis S, Javed Q, Blumenberg M (2016) Meta-analysis of transcriptional responses to mastitis-causing Escherichia coli. PLoS ONE 11(3):e0148562. https://doi.org/10.1371/journal.pone.0148562

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L (2015) Dynamics of the proteome in human and farm animal milk. Wageningen University, Wageningen

    Google Scholar 

  • Zhang L, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, Hettinga K (2015b) Bovine milk proteome in the first 9 days: protein interactions in maturation of the immune and digestive system of the newborn. PLoS ONE 10(2):e0116710

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, Hettinga K (2015c) Perspective on calf and mammary gland development through changes in the bovine milk proteome over a complete lactation. J Dairy Sci 98(8):5362–5373

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Boeren S, Smits M, van Hooijdonk T, Vervoort J, Hettinga K (2016a) Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing. Food Res Int 82:104–111

    Article  CAS  Google Scholar 

  • Zhang L, Boeren S, van Hooijdonk AC, Vervoort JM, Hettinga KA (2015a) A proteomic perspective on the changes in milk proteins due to high somatic cell count. J Dairy Sci 98(8):5339–5351

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, de Waard M, Verheijen H, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, van Goudoever JB, Hettinga K (2016b) Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant. J Proteomics 147:40–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, van Dijk AD, Hettinga K (2017) An interactomics overview of the human and bovine milk proteome over lactation. Proteome Sci 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Cundiff J, Maria S, McMahon R, Woo J, Davidson B, Morrow A (2013) Quantitative analysis of the human milk whey proteome reveals developing milk and mammary-gland functions across the first year of lactation. Proteomes 1(2):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Liang G, Sun X, Guan le L (2016) Comparative miRNAome analysis revealed different miRNA expression profiles in bovine sera and exosomes. BMC Genomics 17(1):630

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Zhao J, Bu D, Sun P, Wang J, Dong Z (2014) Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Lett Appl Microbiol 59(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wan Q, Huang Y, Huang X, Cao J, Ye L, Lim TK, Lin Q, Qin Q (2011) Proteomic analysis of Singapore grouper iridovirus envelope proteins and characterization of a novel envelope protein VP088. Proteomics 11(11):2236–2248

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, Xu X, Wang X (2013) Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J Agric Food Chem 61(29):7070–7080

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Hettinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hettinga, K., Zhang, L. (2018). Omics and Systems Biology: Integration of Production and Omics Data in Systems Biology. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_22

Download citation

Publish with us

Policies and ethics