Skip to main content

Peptidomics on Farm Animal Research

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology

Abstract

Although peptidomics is a discipline complementary to proteomics, since nowadays both mainly rely on analytical strategies based on mass spectrometry, there are fundamental differences. In this chapter, we discuss these differences along with the application of these technologies for the study of the different stages of meat production, from storage to processing to unravel mechanisms that will allow reaching high-quality and safer meat products. The use of peptidomics and the related high-throughput technologies, now relying on mass spectrometry but once also on N-terminal sequencing, is discussed. Clear examples are provided dealing with relevant studies on meat proteolysis and peptide generation occurring during ageing, as well as those produced during ripening of meat products by endogenous and microbial enzymes. Also the involvement of this phenomenon in the development of taste-active compounds is addressed. Finally, the application of novel omics technologies on bacterial identification in food for diagnosis and safety purposes is presented, putting emphasis on their potential advantages and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angelakis E, Million M, Henry M, Raoult D (2011) Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 76:M568–M571

    Article  CAS  PubMed  Google Scholar 

  • Baron CP, Jacobsen S, Purslow PP (2004) Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Sci 68:447–456

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Ekman R (2001) Future aspects of psychoneuroimmunology - lymphocyte peptides reflecting psychiatric disorders studied by mass spectrometry. Arch Physiol Biochem 109:369–371

    Article  CAS  PubMed  Google Scholar 

  • Buncic S (2006) Integrated food safety and veterinary public health. CABI International Publishing, Wallingford

    Book  Google Scholar 

  • Borch E, Kant-Muemansb ML, Blixt Y (1996) Bacterial spoilage of meat products and cured meat. Int J Food Microbiol 33:103–120

    Article  CAS  PubMed  Google Scholar 

  • Buncic S, Nychas GI, Lee MRF, Koutsoumanis K, Hébraud M, Desvaux M, Chorianopoulos N, Bolton D, Blagojevic B, Antic D (2014) Microbial pathogen control in the beef chain: recent research advances. Meat Sci 97:288–297

    Article  PubMed  Google Scholar 

  • Carr FJ, Hill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  PubMed  Google Scholar 

  • Carraturo F, Gargiulo G, Giorgio A, Aliberti F, Guida M (2016) Prevalence, distribution, and diversity of Salmonella spp. in meat samples collected from Italian slaughterhouses. J Food Sci 81(10):M2545–M2551. https://doi.org/10.1111/1750-3841.13430.

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Chui H, Domish L, Hernandez D, Wang G (2016) Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 10:346–357. https://doi.org/10.1002/prca.201500086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones VD, Gordon B (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  PubMed  Google Scholar 

  • Clynen E, Baggerman G, Veelaert D, Cerstiaens A, Van der Horst D, Harthoorn L, Derua R, Waelkens E, De Loof A, Schoofs L (2001) Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur J Biochem 268:1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Colello R, Cáceres ME, Ruiz MJ, Sanz M, Etcheverría A, Padola NL (2016) From farm to table: follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina. Front Microbiol 7:93. https://doi.org/10.3389/fmicb.2016.00093

    Article  PubMed  PubMed Central  Google Scholar 

  • Commas-Riu J, Rius NJ (2009) Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol 36:999–1011

    Article  CAS  Google Scholar 

  • Craik DJ, Young Shim Y, Goransson U, Moss GP, Tan N, Jadhav PD, Shen J, Reaney MJ (2016) Nomenclature of homodetic cyclic peptides produced from ribosomal precursors: an IUPAC task group interim report. Biopolymers 106:917–924

    Article  CAS  PubMed  Google Scholar 

  • Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan JN, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang YL, Gao XC, Ma FM, Wu XQ (2015) Comparison of umami taste peptides in water-soluble extractions of Jinhua and Parma hams. Lwt-Food Sci Technol 60:1179–1186

    Article  CAS  Google Scholar 

  • Das D, Goyal A (2012) Lactic Acid Bacteria in Food Industry. In: Satyanarayana T, Johri B, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht

    Google Scholar 

  • Di Luccia A, Picariello G, Cacace G, Scaloni A, Faccia M, Liuzzi V, Alviti G, Musso SS (2005) Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry-cured hams. Meat Sci 69:479–491

    Article  PubMed  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 2015 13:191. https://doi.org/10.2903/j.efsa.2015.4329

    Google Scholar 

  • Ellis DI, Goodacre R (2001) Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends Food Sci Technol 12:414–424

    Article  CAS  Google Scholar 

  • Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR (2008) Liquid chromatography mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom 19:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Fabbro A, Bencivenni M, Piasentier E, Sforza S, Stecchini ML, Lippe G (2016) Proteolytic resistance of actin but not of myosin heavy chain during processing of Italian PDO (protected designation of origin) dry-cured hams. Eur Food Res Technol 242:881–889

    Article  CAS  Google Scholar 

  • Fadda S, López MC, Vignolo G (2010) Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci 86:66–79

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Fernández-No IC, Böhme K, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P (2010) Differential characterization of biogenic amine-producing bacteria involved in food poisoning using MALDI-TOF mass fingerprinting. Electroph 31:1116–1127

    Google Scholar 

  • Flint S, Drocourt J-L, Walker K, Stevenson B, Dwyer M, Clarke I, McGill D (2006) A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants. Int Dairy J 16:379–384

    Article  CAS  Google Scholar 

  • Florou-Paneri P, Christaki E, Bonos E (2013) Chapter 25: Lactic acid bacteria as source of functional ingredients. In: Marcelino Kongo (ed) Lactic acid bacteria - R & D for food, health and livestock purposes. Biochemistry, genetics and molecular biology. https://doi.org/10.5772/47766

  • Fu Y, Young JF, Lokke MM, Lametsch R, Aluko RE, Therkildsen M (2016) Revalorisation of bovine collagen as a potential precursor of angiotensin 1-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J Funct Foods 24:196–206

    Article  CAS  Google Scholar 

  • Fu Y, Young JF, Therkildsen M (2017) Bioactive peptides in beef: endogenous generation through postmortem aging. Meat Sci 123:134–142

    Article  CAS  PubMed  Google Scholar 

  • Gallego M, Mora L, Fraser PD, Aristoy MC, Toldra F (2014) Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham. Food Chem 149:121–128

    Article  CAS  PubMed  Google Scholar 

  • Gallego M, Mora L, Aristoy MC, Toldra F (2015a) Evidence of peptide oxidation from major myofibrillar proteins in dry-cured ham. Food Chem 187:230–235

    Article  CAS  PubMed  Google Scholar 

  • Gallego M, Mora L, Aristoy MC, Toldra F (2015b) Titin-derived peptides as processing time markers in dry-cured ham. Food Chem 167:326–339

    Article  CAS  PubMed  Google Scholar 

  • Gallego M, Mora L, Toldra F (2016) Peptidomics as a tool for quality control in dry-cured ham processing. J Proteomics 147:98–107

    Article  CAS  PubMed  Google Scholar 

  • Hernandez P, Muller M, Appel RD (2006) Automated protein identification by tandem mass spectrometry: issues and strategies. Mass Spectrom Rev 25:235–254

    Article  CAS  PubMed  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria on spectral patterns using matrix assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food nutrition. Am J Clin Nutr 73:365S–373S

    CAS  PubMed  Google Scholar 

  • Horst T, Niedermeyer J (2016) Annotating and interpreting linear and cyclic peptide tandem mass spectra. In: Evans BS (ed) Nonribosomal peptide and polyketide biosynthesis: methods and protocols, methods in molecular biology. Springer, New York, pp 199–207

    Google Scholar 

  • Hsueh P-R, Lee T-F, Du S-H, Teng SH, Liao CH, Sheng WH, Teng LJ (2014) Bruker biotypermatrix-assisted laser desorption ionization-time of flightmass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species. J Clin Microbiol 52:2371–2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes MC, O’Neill EE, McSweeney PLH, Healy A (1999) Proteolysis of bovine F-actin by cathepsin B. Food Chem 64:525–530

    Article  CAS  Google Scholar 

  • Hughes MC, Healy A, McSweeney PLH, O'Neill EE (2000) Proteolytic specificity of cathepsin D on bovine F-actin. Meat Sci 56:165–172

    Article  CAS  PubMed  Google Scholar 

  • Hughes MC, Geary S, Dransfield E, McSweeney PLH, O’Neill EE (2001) Characterization of peptides released from rabbit skeletal muscle troponin-T by mu-calpain under conditions of low temperature and high ionic strength. Meat Sci 59:61–69

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Bollinger LM (2005) Prevalence of Shiga toxin-producing Escherichia coli in beef. Meat Sci 71:676–689. https://doi.org/10.1016/j.meatsci.2005.05.012

    Article  CAS  PubMed  Google Scholar 

  • Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO (2016) Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin city, Nigeria: implications for public health. Int J Environ Res Public Health 13(10):949. https://doi.org/10.3390/ijerph13100949

    Article  PubMed Central  CAS  Google Scholar 

  • Jadhav S, Sevior D, Bhave M, Palombo E (2014) Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF mass spectrometry. J Proteomics 97(31):100–106

    Article  CAS  PubMed  Google Scholar 

  • Jadhav S, Gulati V, Fox E, Karpe A, Bealec D, Sevior D, Bhave M, Palombo E (2015) Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol 202:1–9

    Article  CAS  PubMed  Google Scholar 

  • Jay JM (2000) Modern food microbiology. Chapman and Hall, London

    Book  Google Scholar 

  • Jones RJ (1999) Immunisation against lactic-acid bacteria as a technique to extend the chilled storage life of vacuum-packed lamb. Food Agric Immunol 11:75–81

    Article  Google Scholar 

  • Jones AW, Cooper HJ (2011) Dissociation techniques in mass spectrometry-based proteomics. Analyst 136:3419–3429

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  • Karmi M (2013) Prevalence of methicillin-resistant Staphylococcus aureus in poultry meat in Qena, Egypt. Vet World 6:711–715

    Article  Google Scholar 

  • Kemp CM, Parr T (2008) The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal 2:1254–1264

    Article  CAS  PubMed  Google Scholar 

  • Kitamura SI, Muroya S, Tanabe S, Okumura T, Chikuni K, Nishimura T (2005) Mechanism of production of troponin T fragments during postmortem aging of porcine muscle. J Agric Food Chem 53:4178–4181

    Article  CAS  PubMed  Google Scholar 

  • Koutsoumanis K, Sofos J (2004) Microbial contamination of carcasses and cuts. In: Jensens W (ed) Encyclopedia of meat sciences. Elsevier Academic Press, Amsterdam, pp 727–737

    Chapter  Google Scholar 

  • Lafarga T, Hayes M (2014) Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci 98:227–239

    Article  CAS  PubMed  Google Scholar 

  • Lafarga T, Wilm M, Wynne K, Hayes M (2016) Bioactive hydrolysates from bovine blood globulins: generation, characterisation, and in silico prediction of toxicity and allergenicity. J Funct Foods 24:142–155

    Article  CAS  Google Scholar 

  • Lametsch R, Bendixen E (2001) Proteome analysis applied to meat science: characterizing post mortem changes in porcine muscle. J Agric Food Chem 49:4531–4537

    Article  CAS  PubMed  Google Scholar 

  • Lametsch R, Roepstorff P, Bendixen E (2002) Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem 50:5508–5512

    Article  CAS  PubMed  Google Scholar 

  • Lametsch R, Karlsson A, Rosenvold K, Andersen HJ, Roepstorff P, Bendixen E (2003) Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem 51:6992–6997

    Article  CAS  PubMed  Google Scholar 

  • Lametsch R, Roepstorff P, Moller HS, Bendixen E (2004) Identification of myofibrillar substrates for mu-calpain. Meat Sci 68:515–521

    Article  CAS  PubMed  Google Scholar 

  • Lartigue M-F, Héry-Arnaud G, Haguenoer E, Domelier A-S, Schmit P-O, van der Mee-Marquet N, Lanotte P, Mereghetti L, Kostrzewa M, Quentin R (2009) Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 47:2284–2287

    Article  PubMed  PubMed Central  Google Scholar 

  • Laville E, Sayd T, Morzel M, Blinet S, Chambon C, Lepetit J, Renand G, Hocquette JF (2009) Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J Agric Food Chem 57:10755–10764

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen Y, Fan Y, Wang M (2006) Foodborne diseases occurred in 2003 - report of the national foodborne diseases surveillance system, China. Chin J Hyg Res 35:201–204

    Google Scholar 

  • López CM, Sentandreu MA, Vignolo GM, Fadda SG (2015a) Proteomic and peptidomic insights on myofibrillar protein hydrolysis in a sausage model during fermentation with autochthonous starter cultures. Food Res Int 78:41–49

    Article  PubMed  CAS  Google Scholar 

  • López CM, Bru E, Vignolo GM, Fadda SG (2015b) Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Sci 104:20–29

    Article  PubMed  CAS  Google Scholar 

  • López CM, Sentandreu MA, Vignolo GM, Fadda SG (2015c) Low molecular weight peptides derived from sarcoplasmic proteins produced by an autochthonous starter culture in a beaker sausage model. EuPA Open Proteomics 7:54–63

    Article  CAS  Google Scholar 

  • Luo J, Liu X, Tian Q, Yue W, Zeng J, Chen G, Cai X (2009) Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal Biochem 394:1–6. https://doi.org/10.1016/j.ab.2009.05.021.

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Marbaix H, Budinger D, Dieu M, Fumiere O, Gillard N, Delahaut P, Mauro S, Raes M (2016) Identification of proteins and peptide biomarkers for detecting banned Processed Animal Proteins (PAPs) in meat and bone meal by mass spectrometry. J Agric Food Chem 64:2405–2414

    Article  CAS  PubMed  Google Scholar 

  • McEvoy, J. M., A. M. Doherty, M. Finnerty, J. J. Sheridan, L., McGuire, I. S. Blair, D. A. McDowell, and D. Harrington. (2000) The relationship between hide cleanliness and bacterial numbers on beef carcasses at a commercial abattoir. Lett Appl Microbiol 30, 390–395.

    Google Scholar 

  • McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26:537–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillin K (2008) Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Sci 80:43–65

    Article  CAS  PubMed  Google Scholar 

  • Minamino N (2001) Peptidome: the fact-database for endogenous peptides. Tanpakushitsu kakusan koso. Protein Nucleic Acid Enzyme 46:1510–1517

    Google Scholar 

  • Mirdhayati I, Hermanianto J, Wijaya CH, Sajuthi D, Arihara K (2016) Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus). J Sci Food Agric 96:3536–3542

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Sentandreu MA, Fraser PD, Toldra F, Bramley PM (2009a) Oligopeptides arising from the degradation of creatine kinase in Spanish dry-cured ham. J Agric Food Chem 57:8982–8988

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Sentandreu MA, Koistinen KM, Fraser PD, Toldra F, Bramley PM (2009b) Naturally generated small peptides derived from myofibrillar proteins in serrano dry-cured ham. J Agric Food Chem 57:3228–3234

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Sentandreu MA, Toldra F (2010) Identification of small troponin T peptides generated in dry-cured ham. Food Chem 123:691–697

    Article  CAS  Google Scholar 

  • Mora L, Sentandreu MA, Toldra F (2011a) Intense degradation of myosin light chain isoforms in Spanish dry-cured ham. J Agric Food Chem 59:3884–3892

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Valero ML, del Pino MMS, Sentandreu MA, Toldra F (2011b) Small peptides released from muscle glycolytic enzymes during dry-cured ham processing. J Proteomics 74:442–450

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Escudero E, Toldra F, Aristoy M-C (2015a) A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. Int J Food Microbiol 212:41–48

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Gallego M, Aristoy MC, Fraser PD, Toldra F (2015b) Peptides naturally generated from ubiquitin-60S ribosomal protein as potential biomarkers of dry-cured ham processing time. Food Control 48:102–107

    Article  CAS  Google Scholar 

  • Mora L, Gallego M, Escudero E, Reig M, Toldra F, Aristoy M-C (2015c) Small peptides hydrolysis in dry-cured meats. Int J Food Microbiol 212:9–15

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Calvo L, Escudero E, Toldra F (2016) Differences in pig genotypes influence the generation of peptides in dry-cured ham processing. Food Res Int 86:74–82

    Article  CAS  Google Scholar 

  • Morzel M, Chambon C, Hamelin M, Sante-Lhoutellier V, Sayd T, Monin G (2004) Proteome changes during pork meat ageing following use of two different pre-slaughter handling procedures. Meat Sci 67:689–696

    Article  CAS  PubMed  Google Scholar 

  • Morzel M, Terlouw C, Chambon C, Micol D, Picard B (2008) Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d'Aquitaine” young bulls: a central role of HSP27 isoforms. Meat Sci 78:297–304

    Article  CAS  PubMed  Google Scholar 

  • Muroya S, Kitamura S, Tanabe S, Nishimura T, Nakajima I, Chikuni K (2004) N-terminal amino acid sequences of troponin T fragments, including 30 kDa one, produced during postmortem aging of bovine longissimus muscle. Meat Sci 67:19–24

    Article  CAS  PubMed  Google Scholar 

  • Muroya S, Ohnishi-Kameyama M, Oe M, Nakajima I, Chikuni K (2007) Postmortem changes in bovine troponin T isoforms on two-dimensional electrophoretic gel analyzed using mass spectrometry and western blotting: the limited fragmentation into basic polypeptides. Meat Sci 75:506–514

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y, Nishimura T, Shimizu M, Arai S (1995) Effects of freezing on the proteolysis of beef during storage at 4 degrees C. Biosci Biotech Bioch 59:2255–2258

    Article  CAS  Google Scholar 

  • Nguyen DT, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Le Thanh B, Vandamme P (2012) Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett Appl Microbiol 55:265–273

    Article  CAS  Google Scholar 

  • Nieminen TT, Vihavainen E, Paloranta A, Lehto J, Paulin L, Auvinen P, Solismaa M, Björkroth KJ (2011) Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction fragment length polymorphism. Int J Food Microbiol 144:360–366

    Article  CAS  PubMed  Google Scholar 

  • Nomura F (2015) Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology. Biochim Biophys Acta 1854:528–537

    Article  CAS  PubMed  Google Scholar 

  • Nørrung B, Andersen JK, Buncic S (2009) Main concerns of pathogenic microorganisms in meat. In: Todra F (ed) Safety of meat and processed meat. Springer, New York, pp 3–29

    Chapter  Google Scholar 

  • Nychas G-J, Skandamis P, Tassou C, Koutsoumanis K (2008) Meat spoilage during distribution. Meat Sci 78:77–89

    Article  PubMed  Google Scholar 

  • Ochoa ML, Harrington PB (2005) Immunomagnetic isolation of enterohemorrhagic Escherichia coli O157:H7 from ground beef and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searches. Anal Chem 77:5258–5267

    Article  CAS  PubMed  Google Scholar 

  • Okumura T, Yamada R, Nishimura T (2003) Survey of conditioning indicators for pork loins: changes in myofibrils, proteins and peptides during postmortem conditioning of vacuum-packed pork loins for 30 days. Meat Sci 64:467–473

    Article  CAS  PubMed  Google Scholar 

  • Okumura T, Yamada R, Nishimura T (2004) Sourness-suppressing peptides in cooked pork loins. Biosci Biotech Bioch 68:1657–1662

    Article  CAS  Google Scholar 

  • Ortea I, O’Connor G, Maquet A (2016) Review on proteomics for food authentication. J Proteomics 147:212–225

    Article  CAS  PubMed  Google Scholar 

  • Ouali A, Herrera-Mendez CH, Coulis G, Becila S, Boudjellal A, Aubry L, Sentandreu MA (2006) Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci 74:44–58

    Article  PubMed  Google Scholar 

  • Ouali A, Gagaoua M, Boudida Y, Becila S, Boudjellal A, Herrera-Mendez CH, Sentandreu MA (2013) Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci 95:854–870

    Article  CAS  PubMed  Google Scholar 

  • Panchaud A, Affolter M, Kussmann M (2012) Mass spectrometry for nutritional peptidomics: how to analyze food bioactives and their health effects. J Proteomics 75:3546–3559

    Article  CAS  PubMed  Google Scholar 

  • Paolella S, Falavigna C, Faccini A, Virgili R, Sforza S, Dall’Asta C, Dossena A, Galaverna G (2015) Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: characterization of the released peptide fraction. Food Res Int 67:136–144

    Article  CAS  Google Scholar 

  • Park BY, Kim NK, Lee CS, Hwang IH (2007) Effect of fiber type on postmortem proteolysis in longissimus muscle of landrace and Korean native black pigs. Meat Sci 77:482–491

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic M, Huber I, Konrad R, Busch U (2013) Application of MALDI-TOF MS for the identification of food borne bacteria. Open Microbiol J 7:135–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Factories 13(Suppl 1):S3. http://www.microbialcellfactories.com/content/13/S1/S3

    Article  Google Scholar 

  • Picariello G, De Martino A, Mamone G, Ferranti P, Addeo F, Faccia M, SpagnaMusso S, Di Luccia A (2006) Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis. J Chromatogr B 833:101–108

    Article  CAS  Google Scholar 

  • Picariello G, Mamone G, Addeo F, Ferranti P (2012) Novel mass spectrometry-based applications of the ‘omic’ sciences in food technology and biotechnology. Food Technol Biotech 50:286–305

    CAS  Google Scholar 

  • Polati R, Menini M, Robotti E, Millioni R, Marengo E, Novelli E, Balzan S, Cecconi D (2012) Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem 135:2052–2069

    Article  CAS  PubMed  Google Scholar 

  • Quintela-Qunitela-Baluja M, Böhme K, Fernández-No IC, Morandi S, Alnakip ME, Caamaño-Antelo S, Velázquez JB, Calo-Mata P (2013) Characterization of different food-isolated Enterococcus strains by MALDI-TOFmass fingerprinting. Electrophoresis 34:2240–2250

    Article  CAS  Google Scholar 

  • Rodriguez-Frometa RA, Rodriguez-Diaz J, Sentandreu E, Ouali A, Sentandreu MA (2013) Proteolytic action of caspases 3 and 7 on the hydrolysis of bovine and porcine muscle myofibrillar proteins. In: de Almeida A, Eckersall D, Bencurova E, Dolinska S, Mlynarcik P, Vincova M, Bhide M (eds) Farm animal proteomics 2013. Wageningen Academic Publishers, Wageningen, pp 278–281

    Chapter  Google Scholar 

  • Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L (2012) Farm animal milk proteomics. J Proteomics 75:4259–4274

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Moyano S, Nannan T, Underwood MA, Millls DA (2012) Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Food Microbiol 30:432–437

    Article  CAS  PubMed  Google Scholar 

  • Russo F, Ercolini D, Mauriello G, Villani F (2006) Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups. Food Microbiol 23:797–802

    Article  CAS  PubMed  Google Scholar 

  • Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73:746–750

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Rivera L, Martinez-Maqueda D, Cruz-Huerta E, Miralles B, Recio I (2014) Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 63:170–181

    Article  CAS  Google Scholar 

  • Sawdy JC, Kaiser SA, St-Pierre NR, Wick MP (2004) Myofibrillar 1-D fingerprints and myosin heavy chain MS analyses of beef loin at 36 h postmortem correlate with tenderness at 7 days. Meat Sci 67:421–426

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteomics 3:171–182

    Article  CAS  Google Scholar 

  • Schulz-Knappe P, Zucht HD, Heine C, Jurgens M, Hess R, Schrader M (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen 4:207–217

    Article  CAS  PubMed  Google Scholar 

  • Sentandreu MA, Sentandreu E (2011) Peptide biomarkers as a way to determine meat authenticity. Meat Sci 89:280–285

    Article  CAS  PubMed  Google Scholar 

  • Sentandreu MA, Sentandreu E (2014) Authenticity of meat products: tools against fraud. Food Res Int 60:19–29

    Article  Google Scholar 

  • Sentandreu MA, Coulis G, Ouali A (2002) Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci Tech 13:400–421

    Article  CAS  Google Scholar 

  • Sentandreu MA, Stoeva S, Aristoy MC, Laib K, Voelter W, Toldra F (2003) Identification of small peptides generated in Spanish dry-cured ham. J Food Sci 68:64–69

    Article  CAS  Google Scholar 

  • Sentandreu MA, Armenteros M, Calvete JJ, Ouali A, Aristoy MC, Toldra F (2007) Proteomic identification of actin-derived oligopeptides in dry-cured ham. J Agric Food Chem 55:3613–3619

    Article  CAS  PubMed  Google Scholar 

  • Sentandreu MA, Fraser PD, Halket J, Patel R, Bramley PM (2010) A proteomic-based approach for detection of chicken in meat mixes. J Proteome Res 9:3374–3383

    Article  CAS  PubMed  Google Scholar 

  • Sforza S, Pigazzani A, Motti M, Porta C, Virgili R, Galaverna G, Dossena A, Marchelli R (2001) Oligopeptides and free amino acids in Parma hams of known cathepsin B activity. Food Chem 75:267–273

    Article  CAS  Google Scholar 

  • Sforza S, Boni M, Ruozi R, Virgili R, Marchelli R (2003) Identification and significance of the N-terminal part of swine pyruvate kinase in aged Parma hams. Meat Sci 63:57–61

    Article  PubMed  Google Scholar 

  • Sharma KP, Chattopadhyay UK (2015) Assessment of microbial load of raw meat samples sold in the open markets of city of Kolkata. J Agric Vet Sci 8:24–27

    Google Scholar 

  • Siegrist TJ, Anderson PD, Huen WH, Kleinheinz GT, McDermott CM, Sandrin TR (2007) Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J Microbiol Methods 68:554–562

    Article  CAS  PubMed  Google Scholar 

  • Sierra V, Fernandez-Suarez V, Castro P, Osoro K, Vega-Naredo I, Garcia-Macia M, Rodriguez-Colunga P, Coto-Montes A, Olivan M (2012) Identification of biomarkers of meat tenderisation and its use for early classification of Asturian beef into fast and late tenderising meat. J Sci Food Agric 92:2727–2740

    Article  CAS  PubMed  Google Scholar 

  • Skrlep M, Candek-Potokar M, Mandelc S, Javornik B, Gou P, Chambon C, Sante-Lhoutellier V (2011) Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Meat Sci 88:657–667

    Article  CAS  PubMed  Google Scholar 

  • Stadnik J, Keska P (2015) Meat and fermented meat products as a source of bioactive peptides. Acta Sci Pol Technol Aliment 14:181–190

    Article  CAS  PubMed  Google Scholar 

  • Stoeva S, Byrne CE, Mullen AM, Troy DJ, Voelter W (2000) Isolation and identification of proteolytic fragments from TCA soluble extracts of bovine M-longissimus dorsi. Food Chem 69:365–370

    Article  CAS  Google Scholar 

  • Teramoto K, Sato H, Sun L, Torimura M, Tao H, Yoshikawa H, Hotta Y, Hosoda A, Tamura H (2007) Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal Chem 79:8712–8719

    Article  CAS  PubMed  Google Scholar 

  • Theron L, Sayd T, Pinguet J, Chambon C, Robert N, Sante-Lhoutellier V (2011) Proteomic analysis of semimembranosus and biceps femoris muscles from Bayonne dry-cured ham. Meat Sci 88:82–90

    Article  CAS  PubMed  Google Scholar 

  • Udenigwe CC, Howard A (2013) Meat proteome as source of functional biopeptides. Food Res Int 54:1021–1032

    Article  CAS  Google Scholar 

  • Vaillant V, De Valk H, Baron E, Ancelle T, Colin P, Delmas MC, Dufour B, Pouillot R, Le Strat Y, Weinbreck P, Jougla E, Desenclos JC (2005) Foodborne infections in France. Foodborne Pathog Dis 2:221–232

    Article  CAS  PubMed  Google Scholar 

  • van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venema K, do Carmo AP (eds) (2015) Probiotic and prebiotics: current status and future trends. Caister Academic Press, Norfolk, pp 1–3

    Google Scholar 

  • Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1:118–131

    Article  CAS  PubMed  Google Scholar 

  • Vignolo, G., Castellano, P., and Fadda S. (2015). Part III, Chapter 15: Starter cultures: bioprotective cultures. In: Toldrá F, Talon R (eds) Handbook of fermented meat and poultry, 2nd edn. Blackwell, Malden, MA, pp 129–137. isbn: 978-1-118-52269-1

    Google Scholar 

  • Voelter W, Stoeva S, Echner H, Beck A, Schutz J, Lehmann R, Haring HU, Schleicher E, Mullen AM, Casserly U et al (2000) Analytical tools for rapid, sensitive, quantitative identification of potential meat quality markers. J Prakt Chem Chem Ztg 342:179–191

    Article  CAS  Google Scholar 

  • Wang YR, Chen Q, Cui SH, Li FQ (2013) Characterization of Staphylococcus aureus isolated from clinical specimens by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Biomed Environ Sci 26:430–436

    PubMed  Google Scholar 

  • Wen SY, Zhou GH, Song SX, Xu XL, Voglmeir J, Liu L, Zhao F, Li MJ, Li L, Yu XB et al (2015) Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics 15:3688–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974. https://doi.org/10.1007/s00253-011-3783-4

    Article  CAS  PubMed  Google Scholar 

  • Williamson YM, Moura H, Woolfitt AR, Pirkle JL, Barr JR, Carvalho MDG, Ades ED, Carlone GM, Sampson JS (2008) Differentiation of Streptococcus pneumonia conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5891–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, White DG, Wagner D, Meng J (2001) Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the greater Washington, D.C. area. Appl Environ Microbiol 67:5431–5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zürbig P, Mischak H (2008) Peptidomics approach to proteomics. In: Soloviev M, Andrén P, Shaw C (eds) Peptidomics methods and applications. Wiley, Hoboken, NJ, pp 155–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Sentandreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fadda, S., Sentandreu, E., Sentandreu, M.A. (2018). Peptidomics on Farm Animal Research. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_19

Download citation

Publish with us

Policies and ethics