Skip to main content

Bioinformatics Support for Farm Animal Proteomics

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology

Abstract

In this chapter, we attempt to compile information published in the most recent reviews and regular publications highlighting the use of bioinformatics in the field of veterinary proteomics. We present a summary of the data resources and popular end user-oriented computational tools that do not require advanced informatics skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbatiello SE, Mani D, Keshishian H, Carr SA (2010) Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem 56:291–305

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R (2009) A stress test for mass spectrometry-based proteomics. Nat Methods 6:411–412

    Article  CAS  PubMed  Google Scholar 

  • Ahrné E, Müller M, Lisacek F (2010) Unrestricted identification of modified proteins using MS/MS. Proteomics 10:671–686

    Article  PubMed  CAS  Google Scholar 

  • Ahrné E, Molzahn L, Glatter T, Schmidt A (2013) Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics 13:2567–2578

    Article  PubMed  CAS  Google Scholar 

  • Alghanem B, Nikitin F, Stricker T, Duchoslav E, Luban J, Strambio-De-Castillia C, Muller M, Lisacek F, Varesio E, Hopfgartner G (2017) Optimization by infusion of multiple reaction monitoring transitions for sensitive peptides LC-MS quantification. Rapid Commun Mass Spectrom 31(9):753–761

    Article  CAS  PubMed  Google Scholar 

  • Baker ES, Burnum-Johnson KE, Ibrahim YM, Orton DJ, Monroe ME, Kelly RT, Moore RJ, Zhang X, Théberge R, Costello CE et al (2015) Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics 15:2766–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt OM, Selevsek N, Gillet LC, Rinner O, Picotti P, Aebersold R, Reiter L (2012) Spectronaut: a fast and efficient algorithm for MRM-like processing of data independent acquisition (SWATH-MS) data. In: 60th ASMS Conference on mass spectrometry and allied topics. Vancouver, Canada, pp 20–24

    Google Scholar 

  • Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Müller M, Lisacek F (2015a) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15:964–980

    Article  CAS  PubMed  Google Scholar 

  • Bilbao A, Zhang Y, Varesio E, Luban J, Strambio-De-Castilla C, Lisacek F, Hopfgartner G (2015b) Ranking fragment ions based on outlier detection for improved label-free quantification in data-independent acquisition LC-MS/MS. J Proteome Res 14:4581–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilbao A, Lisacek F, Hopfgartner G (2016) Dedicated software enhancing data-independent acquisition methods in mass spectrometry. CHIMIA Int J Chem 70:293–293

    Article  CAS  Google Scholar 

  • Bislev SL, Deutsch EW, Sun Z, Farrah T, Aebersold R, Moritz RL, Bendixen E, Codrea MC (2012) A Bovine PeptideAtlas of milk and mammary gland proteomes. Proteomics 12:2895–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broudy D, Killeen T, Choi M, Shulman N, Mani DR, Abbatiello SE, Mani D, Ahmad R, Sahu AK, Schilling B et al (2014) A framework for installable external tools in Skyline. Bioinformatics 30:2521–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundgaard L, Jacobsen S, Sørensen MA, Sun Z, Deutsch EW, Moritz RL, Bendixen E (2014) The Equine PeptideAtlas: a resource for developing proteomics-based veterinary research. Proteomics 14:763–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundgaard L, Bendixen E, Sørensen MA, Harman VM, Beynon RJ, Petersen LJ, Jacobsen S (2016) A selected reaction monitoring-based analysis of acute phase proteins in interstitial fluids from experimental equine wounds healing by secondary intention. Wound Repair Regen 24:525–532

    Article  PubMed  Google Scholar 

  • Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    Article  CAS  PubMed  Google Scholar 

  • Cantacessi C, Campbell BE, Jex AR, Young ND, Hall RS, Ranganathan S, Gasser RB (2012) Bioinformatics meets parasitology. Parasite Immunol 34:265–275

    Article  CAS  PubMed  Google Scholar 

  • Cappadona S, Baker PR, Cutillas PR, Heck AJ, van Breukelen B (2012) Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 43:1087–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM et al (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceciliani F, Eckersall D, Burchmore R, Lecchi C (2014) Proteomics in veterinary medicine. Vet Pathol 51:351–362

    Article  CAS  PubMed  Google Scholar 

  • Chapman JD, Goodlett DR, Masselon CD (2014) Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev 33:452–470

    Article  CAS  PubMed  Google Scholar 

  • Chaze T, Meunier B, Chambon C, Jurie C, Picard B (2009) Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle. Animal 3:980–1000

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Nesvizhskii AI (2007) Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics. J Proteome Res 7:254–265

    Article  PubMed  CAS  Google Scholar 

  • Choi M, Chang C-Y, Clough T, Broudy D, Killeen T, MacLean B, Vitek O (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526

    Article  CAS  PubMed  Google Scholar 

  • Cloutier P, Coulombe B (2013) Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. Biochim Biophys Acta Gene Regul Mech 1829:443–454

    Article  CAS  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro A, Scaloni A, Zolla L (2010) Human milk proteins: an interactomics and updated functional overview. J Proteome Res 9:3339–3373

    Article  PubMed  CAS  Google Scholar 

  • Degan MG, Ryadinskiy L, Fujimoto GM, Wilkins CS, Lichti CF, Payne SH (2016) A skyline plugin for pathway-centric data browsing. J Am Soc Mass Spectrom 27:1752–1757

    Article  CAS  PubMed  Google Scholar 

  • Deutsch EW (2012) File formats commonly used in mass spectrometry proteomics. Mol Cell Proteomics 11:1612–1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deutsch EW, Chambers M, Neumann S, Levander F, Binz P-A, Shofstahl J, Campbell DS, Mendoza L, Ovelleiro D, Helsens K et al (2012) TraML—a standard format for exchange of selected reaction monitoring transition lists. Mol Cell Proteomics 11:111–15040

    Article  CAS  Google Scholar 

  • Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Liu L, Wu W, Armstrong SD, Xia D, Nan H, Hiscox JA, Chen H (2016) Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. J Proteomics 146:58–69

    Article  CAS  PubMed  Google Scholar 

  • Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury JD, Marsh DM, Kellmann M, Zabrouskov V et al (2013) Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 10:744–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egertson JD, MacLean B, Johnson R, Xuan Y, MacCoss MJ (2015) Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat Protoc 10:887–903

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  • Erce MA, Pang CNI, Hart-Smith G, Wilkins MR (2012) The methylproteome and the intracellular methylation network. Proteomics 12:564–586

    Article  CAS  PubMed  Google Scholar 

  • Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang C-Y, Moritz RL (2013) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12:162–171

    Article  CAS  PubMed  Google Scholar 

  • Fellers RT, Greer JB, Early BP, Yu X, LeDuc RD, Kelleher NL, Thomas PM (2015) ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics 15:1235–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortelny N, Cox JH, Kappelhoff R, Starr AE, Lange PF, Pavlidis P, Overall CM (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12:e1001869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. https://doi.org/10.1074/mcp.O111.016717

  • Griss J (2016) Spectral library searching in proteomics. Proteomics 16:729–740

    Article  CAS  PubMed  Google Scholar 

  • Grossmann A, Benlasfer N, Birth P, Hegele A, Wachsmuth F, Apelt L, Stelzl U (2015) Phospho-tyrosine dependent protein-protein interaction network. Mol Syst Biol 11:794–794

    Article  PubMed  CAS  Google Scholar 

  • Hart GW, Greis KD, Dong L-YD, Blomberg MA, Chou T-Y, Jiang M-S, Roquemore EP, Snow DM, Kreppel LK, Cole RN, Comer FI, Arnold CS, Hayes BK (1995) O-linked N-Acetylglucosamine: the “yin-yang” of ser/Thr Phosphorylation? In: Alavi A, Axford JS (eds) Glycoimmunology, Advances in experimental medicine and biology. Springer Nature, Boston, MA, pp 115–123

    Chapter  Google Scholar 

  • Hesselager MO, Codrea MC, Sun Z, Deutsch EW, Bennike TB, Stensballe A, Bundgaard L, Moritz RL, Bendixen E (2016) The Pig PeptideAtlas: a resource for systems biology in animal production and biomedicine. Proteomics 16:634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horlacher O, Lisacek F, Müller M (2015) Mining large scale tandem mass spectrometry data for protein modifications using spectral libraries. J Proteome Res 15:721–731

    Article  PubMed  CAS  Google Scholar 

  • Hu Z-L, Park CA, Reecy JM (2015) Developmental progress and current status of the animal QTLdb. Nucleic Acids Res 44:D827–D833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  CAS  Google Scholar 

  • Huang J, Kailemia MJ, Goonatilleke E, Parker EA, Hong Q, Sabia R, Smilowitz JT, German JB, Lebrilla CB (2016) Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Anal Bioanal Chem 409:589–606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones AR, Eisenacher M, Mayer G, Kohlbacher O, Siepen J, Hubbard SJ, Selley JN, Searle BC, Shofstahl J, Seymour SL et al (2012) The mzIdentML data standard for mass spectrometry-based proteomics results. Mol Cell Proteomics 11:111–14381

    Article  CAS  Google Scholar 

  • Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925

    Article  PubMed  CAS  Google Scholar 

  • Kamath KS, Vasavada MS, Srivastava S (2011) Proteomic databases and tools to decipher post-translational modifications. J Proteomics 75:127–144

    Article  CAS  PubMed  Google Scholar 

  • Kaspric N, Picard B, Reichstadt M, Tournayre J, Bonnet M (2015) ProteINSIDE to easily investigate proteomics data from ruminants: application to mine proteome of adipose and muscle tissues in bovine foetuses. PLoS One 10:e0128086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Eng J, Zhang N, Li X, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1(2005):0017

    PubMed  Google Scholar 

  • Keller A, Bader SL, Shteynberg D, Hood L, Moritz RL (2015) Automated validation of results and removal of fragment ion interferences in targeted analysis of data independent acquisition MS using SWATHProphet. Mol Cell Proteomics. https://doi.org/10.1074/mcp.O114.044917

  • Kim S, Pevzner PA (2014) MS-GF + makes progress towards a universal database search tool for proteomics. Nat Commun. https://doi.org/10.1038/ncomms6277

  • Koene MG, Mulder HA, Stockhofe-Zurwieden N, Kruijt L, Smits MA (2012) Serum protein profiles as potential biomarkers for infectious disease status in pigs. BMC Vet Res 8:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:1–14

    Article  Google Scholar 

  • Lawrence RT, Searle BC, Llovet A, Villén J (2016) Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods 13(5):431–434

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhong C-Q, Xu X, Cai S, Wu X, Zhang Y, Chen J, Shi J, Lin S, Han J (2015) Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods. https://doi.org/10.1038/NMETH.3593

  • Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hüttenhain R, Collins B, Aebersold R (2013) Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 13:811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani D, Abbatiello SE, Carr SA (2012) Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics 13:S9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens L (2010) Proteomics databases and repositories. In: Methods in molecular biology. Springer Nature, Boston, MA, pp 213–227

    Google Scholar 

  • Martens L, Vizca𝚤no JA (2017) A golden age for working with public proteomics data. Trends Biochem Sci 42(5):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai LR, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC (2010) AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 39:D497–D506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCord J, Sun Z, Deutsch EW, Moritz RL, Muddiman DC (2017) The PeptideAtlas of the domestic laying Hen. J Proteome Res 16:1352–1363

    Article  CAS  PubMed  Google Scholar 

  • Minguez P, Letunic I, Parca L, Garcia-Alonso L, Dopazo J, Huerta-Cepas J, Bork P (2014) PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins. Nucleic Acids Res 43:D494–D502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Na S, Bandeira N, Paek E (2011) Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics 11:M111.010199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro P, Kuharev J, Gillet LC, Bernhardt OM, MacLean B, Röst HL, Tate SA, Tsou C-C, Reiter L, Distler U et al (2016) A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotechnol 34(11):1130–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  PubMed  Google Scholar 

  • Orduna AR, Husby E, Yang CT, Ghosh D, Beaudry F (2015) Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Food Addit Contam Part A 32:1709–1717

    Article  CAS  Google Scholar 

  • Packialakshmi B, Liyanage R, Jackson O, Lay J, Okimoto R, Rath NC (2016) Proteomic changes in the plasma of broiler chickens with femoral head necrosis. Biomark Insights 11:55–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R et al (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizca𝚤no JA (2015) Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics 15:930–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475–1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  PubMed  Google Scholar 

  • Reiter L, Claassen M, Schrimpf SP, Jovanovic M, Schmidt A, Buhmann JM, Hengartner MO, Aebersold R (2009) Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 8:2405–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter L, Rinner O, Picotti P, Hüttenhain R, Beck M, Brusniak M-Y, Hengartner MO, Aebersold R (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8:430–435

    Article  CAS  PubMed  Google Scholar 

  • Reker D, Malmström L (2012) Bioinformatic challenges in targeted proteomics. J Proteome Res 11:4393–4402

    Article  CAS  PubMed  Google Scholar 

  • Röst H, Malmström L, Aebersold R (2012) A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 11:540–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinovi SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223

    Article  PubMed  CAS  Google Scholar 

  • Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-C, Gutenbrunner P, Kenar E et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748

    Article  PubMed  CAS  Google Scholar 

  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat methods 9:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC et al (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in Skyline application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, Lam H, Amodei D, Mallick P, MacLean B et al (2015a) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10:426–441

    Article  CAS  PubMed  Google Scholar 

  • Schubert OT, Ludwig C, Kogadeeva M, Zimmermann M, Rosenberger G, Gengenbacher M, Gillet LC, Collins BC, Röst HL, Kaufmann SHE, Sauer U, Aebersold R (2015b) Absolute proteome composition and dynamics during dormancy and resuscitation of mycobacterium tuberculosis. Cell Host Microbe 18:96–108

    Article  CAS  PubMed  Google Scholar 

  • Schwammle V, Aspalter C-M, Sidoli S, Jensen ON (2014) Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics 13:1855–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle BC, Egertson JD, Bollinger JG, Stergachis AB, MacCoss MJ (2015) Using data independent acquisition (DIA) to model high-responding peptides for targeted proteomics experiments. Mol Cell Proteomics 14:2331–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serang O, Käll L (2015) Solution to statistical challenges in proteomics is more statistics, not less. J Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00568

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL, Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:111–7690

    Article  CAS  Google Scholar 

  • Smith LM, Kelleher NL et al (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares R, Franco C, Pires E, Ventosa M, Palhinhas R, Koci K, de Almeida AM, Coelho AV (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75:4190–4206

    Article  CAS  PubMed  Google Scholar 

  • Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, Domon B (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Stella R, Barrucci F, Angeletti R, James P, Montesissa C, Biancotto G (2016) Targeted proteomics for the indirect detection of dexamethasone treatment in bovines. Anal Bioanal Chem 408:8343–8353

    Article  CAS  PubMed  Google Scholar 

  • Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K et al (2008) OpenMS–an open-source software framework for mass spectrometry. BMC Bioinform 9:163

    Article  CAS  Google Scholar 

  • Tacoma R, Fields J, Ebenstein DB, Lam Y-W, Greenwood SL (2016) Characterization of the bovine milk proteome in early-lactation Holstein and Jersey breeds of dairy cows. J Proteomics 130:200–210

    Article  CAS  PubMed  Google Scholar 

  • Taga H, Chilliard Y, Meunier B, Chambon C, Picard B, Zingaretti MC, Cinti S, Bonnet M (2012) Cellular and molecular large-scale features of fetal adipose tissue: Is bovine perirenal adipose tissue Brown1685. J Cell Physiol 227:1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Teleman J, Röst H, Rosenberger G, Schmitt U, Malmström L, Malmström J, Levander F (2014) DIANA-algorithmic improvements for analysis of data-independent acquisition MS data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu686

  • The M, MacCoss MJ, Noble WS, Käll L et al (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27:1719–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras A-C, Nesvizhskii AI (2015) DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics. Nat Methods 12:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsou C-C, Tsai C-F, Teo G, Chen Y-J, Nesvizhskii AI (2016) Untargeted, spectral library-free analysis of data independent acquisition proteomics data generated using Orbitrap mass spectrometers.16(15–16):2257–2271

    Google Scholar 

  • Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14:513–524

    Article  CAS  PubMed  Google Scholar 

  • Verhey KJ, Gaertig J (2007) The Tubulin Code. Cell Cycle 6:2152–2160

    Article  CAS  PubMed  Google Scholar 

  • Vizca𝚤no JA, Deutsch EW, Wang R, Csordas A, Reisinger F, R𝚤os D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz P-A, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus H-J, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  Google Scholar 

  • Vizca𝚤no JA, Csordas A, del Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu Q-W, Wang R, Hermjakob H (2015) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456

    Article  CAS  Google Scholar 

  • Walzer M, Qi D, Mayer G, Uszkoreit J, Eisenacher M, Sachsenberg T, Gonzalez-Galarza FF, Fan J, Bessant C, Deutsch EW et al (2013) The mzQuantML data standard for mass spectrometry–based quantitative studies in proteomics. Mol Cell Proteomics 12:2332–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C (2015a) Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tucholska M, Knight JD, Lambert J-P, Tate S, Larsen B, Gingras A-C, Bandeira N (2015b) MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nat Methods. https://doi.org/10.1038/nmeth.3655

  • Yates JR III (2015) Pivotal role of computers and software in mass spectrometry–SEQUEST and 20 years of tandem MS database searching. J Am Soc Mass Spectrom 26:1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G, Varesio E (2015) The use of variable Q1 isolation Windows improves selectivity in LC–SWATH–MS acquisition. J Proteome Res 14:4359–4371

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, van Dijk ADJ, Hettinga K (2016) An interactomics overview of the human and bovine milk proteome over lactation. Proteome Sci. https://doi.org/10.1186/s12953-016-0110-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Lisacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilbao, A., Lisacek, F. (2018). Bioinformatics Support for Farm Animal Proteomics. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_18

Download citation

Publish with us

Policies and ethics