All-Silicon Optical Technology for Contactless Testing of Integrated Circuits
Chapter
First Online:
- 367 Downloads
Abstract
The uniqueness of the “all-silicon optical testing methodology” lies in the fact that it is fully an optical technique utilizing visible light, and it is completely compatible with standard silicon IC processing. It uses optical signals transmitted to the circuit for “inputting” the stimulus data and also uses optical signals from the circuit for observation of the logic output. In addition, this approach is fully compatible with the simultaneous use of mechanical probes for power and other signals. The approach avoids many of the limitations of other contactless techniques.
Keywords
Contactless testing All-silicon optical test Silicon LEDReferences
- 1.S. Sayil, D.V. Kerns, S.E. Kerns, Comparison of contactless measurement and testing techniques to a new all-silicon optical test and characterization method. IEEE Trans. Instrum. Meas. 54(5), 2082–2089 (2005)CrossRefGoogle Scholar
- 2.S. Sayil, “Optical Contactless Probing: An all-silicon, fully optical approach”- Special feature article. IEEE Des. Test Comput. 23(2), 138–146 (2006)CrossRefGoogle Scholar
- 3.R. Newman, Visible light from a silicon p-n junction. Phys. Rev. 100(2), 700–703 (1955)CrossRefGoogle Scholar
- 4.D. Jiang, B.L. Bhuva, S.E. Kerns, D. V. Kerns, Comparative analysis of metal and optical interconnect technology, in Proceedings of IEEE International Interconnect Technology Conference, 2000, pp. 25–27Google Scholar
- 5.A.T. Fiory, N.M. Ravindra, Light emission from silicon: some perspectives and applications. J. Electron. Mater. 32(10), 1043–1051 (2003)CrossRefGoogle Scholar
- 6.L.T. Canham, Silicon quantum wire array fabrication by electro-chemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
- 7.F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P.G. Fallica, Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Appl. Phys. Lett. 81, 3242–3244 (2002)CrossRefGoogle Scholar
- 8.M.E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, C. Buongiorno, Si-based materials and devices for light emission in silicon. Phys. E. 16, 547–553 (2003)CrossRefGoogle Scholar
- 9.A. Nazarov, J.M. Sun, W. Skorupa, R.A. Yankov, I.N. Osiyuk, I.P. Tjagulskii, V.S. Lysenko, T. Gebel, Light emission and charge Trapping in Er-doped silicon dioxide films containing silicon nanocrystals. Appl. Phys. Lett. 86, 151914 (2005)CrossRefGoogle Scholar
- 10.N. Akil, S.E. Kerns, D.V. Kerns, A. Hoffmann, J.-P. Charles, A multimechanism model for photon generation by silicon junctions in avalanche breakdown. IEEE Trans. Electron Devices 46(5), 1022–1028 (1999)CrossRefGoogle Scholar
- 11.A. Chatterjee, B. Bhuva, Accelerated stressing and degradation mechanisms for Si-based photoemitters. IEEE Trans. Device Mater. Reliab. 2(3) (2002)Google Scholar
- 12.A. Chatterjee, B. Bhuva, R. Schrimpf, High-speed light modulation in avalanche breakdown mode for Si diodes. IEEE Electron Device Letters 25(9) (2004)Google Scholar
- 13.S. Sayil, Avalanche breakdown in silicon devices for contactless logic testing and optical interconnect. Analog Integr. Circ. Sig. Process 56(3), 213–221 (2008)CrossRefGoogle Scholar
- 14.J.C. Tsang, J.A. Kash, D.P. Vallett, Picosecond imaging circuit analysis. IBM J. Res. Dev. 44(4), 583–603 (2000)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG 2018