Skip to main content

Improving Gait Cryptosystem Security Using Gray Code Quantization and Linear Discriminant Analysis

  • Conference paper
  • First Online:
Information Security (ISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10599))

Included in the following conference series:

Abstract

Gait has been considered as an efficient biometric trait for user authentication. Although there are some studies that address the task of securing gait templates/models in gait-based authentication systems, they do not take into account the low discriminability and high variation of gait data which significantly affects the security and practicality of the proposed systems. In this paper, we focus on addressing the aforementioned deficiencies in inertial-sensor based gait cryptosystem. Specifically, we leverage Linear Discrimination Analysis to enhance the discrimination of gait templates, and Gray code quantization to extract high discriminative and stable binary template. The experimental results on 38 different users showed that our proposed method significantly improve the performance and security of the gait cryptosystem. In particular, we achieved the False Acceptant Rate of \(6\times 10^{-5} \%\) (i.e., 1 fail in 16983 trials) and False Rejection Rate of \(9.2 \%\) with 148-bit security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, L.: Special functions of mathematics for engineers (1992)

    Google Scholar 

  2. Cutting, J.E., Kozlowski, L.T., et al.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9(5), 353–356 (1977)

    Article  Google Scholar 

  3. Derawi, M., Bours, P.: Gait and activity recognition using commercial phones. Comput. Secur. 39, 137–144 (2013)

    Article  Google Scholar 

  4. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  5. Doran, R.W.: The gray code. J. UCS 13(11), 1573–1597 (2007)

    MathSciNet  Google Scholar 

  6. Fisher, R.A.: The use of multiple measures in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  7. Frank, J., Mannor, S., Pineau, J., Precup, D.: Time series analysis using geometric template matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 740–754 (2013)

    Article  Google Scholar 

  8. Gadaleta, M., Rossi, M.: Idnet: Smartphone-based gait recognition with convolutional neural networks. arXiv preprint arXiv:1606.03238 (2016)

  9. Gray, F.: Pulse code communication, 17 March 1953. US Patent 2,632,058

    Google Scholar 

  10. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)

    Article  Google Scholar 

  11. Hoang, T., Choi, D., Nguyen, T.: Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme. Int. J. Inf. Secur. 14(6), 549–560 (2015)

    Article  Google Scholar 

  12. Hoang, T., Choi, D., Nguyen, T.: On the instability of sensor orientation in gait verification on mobile phone. In: 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE), vol. 4, pp. 148–159. IEEE (2015)

    Google Scholar 

  13. Hoang, T., Vo, V., Nguyen, T., Choi, D.: Gait identification using accelerometer on mobile phone. In: 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 344–348. IEEE (2012)

    Google Scholar 

  14. Imamverdiyev, Y., Teoh, A.B.J., Kim, J.: Biometric cryptosystem based on discretized fingerprint texture descriptors. Expert Syst. Appl. 40(5), 1888–1901 (2013)

    Article  Google Scholar 

  15. Inthavisas, K., Lopresti, D.: Speech biometric mapping for key binding cryptosystem. In: Biometric Technology for Human Identification VIII (SPIE Defense, Security, and Sensing), Orlando, FL, p. 80291P–1 (2011)

    Google Scholar 

  16. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Sig. Process. 2008, 113 (2008)

    Google Scholar 

  17. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th ACM conference on Computer and communications security, pp. 28–36. ACM (1999)

    Google Scholar 

  19. Kaur, H., Khanna, P.: Biometric template protection using cancelable biometrics and visual cryptography techniques. Multimedia Tools Appl. 75(23), 16333–16361 (2016)

    Article  Google Scholar 

  20. Kelkboom, E.J., Breebaart, J., Buhan, I., Veldhuis, R.N.: Maximum key size and classification performance of fuzzy commitment for gaussian modeled biometric sources. IEEE Trans. Inf. Forensics Secur. 7(4), 1225–1241 (2012)

    Article  Google Scholar 

  21. Lim, M.-H., Teoh, A.B.J., Toh, K.-A.: An efficient dynamic reliability-dependent bit allocation for biometric discretization. Pattern Recogn. J. 45(5), 1960–1971 (2012)

    Article  Google Scholar 

  22. Morelos-Zaragoza, R.H.: The art of error correcting coding. Wiley, New York (2006)

    Book  Google Scholar 

  23. Morse, M., Hartloff, J., Effland, T., Schuler, J., Cordaro, J., Tulyakov, S., Rudra, A., Govindaraju, V.: Secure fingerprint matching with generic local structures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 84–89 (2014)

    Google Scholar 

  24. Natgunanathan, I., Mehmood, A., Xiang, Y., Beliakov, G., Yearwood, J.: Protection of privacy in biometric data. IEEE Access 4, 880–892 (2016)

    Article  Google Scholar 

  25. Nickel, C., Busch, C.: Classifying accelerometer data via hidden markov models to authenticate people by the way they walk. IEEE Aerosp. Electron. Syst. Mag. 28(10), 29–35 (2013)

    Article  Google Scholar 

  26. Ntantogian, C., Malliaros, S., Xenakis, C.: Gaithashing: a two-factor authentication scheme based on gait features. Comput. Secur. J. 52, 17–32 (2015)

    Article  Google Scholar 

  27. Rathgeb, C., Uhl, A.: Adaptive fuzzy commitment scheme based on iris-code error analysis. In: 2010 2nd European Workshop on Visual Information Processing (EUVIP), pp. 41–44. IEEE (2010)

    Google Scholar 

  28. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 2011(1), 3 (2011)

    Article  Google Scholar 

  29. Shannon, C.E., Weaver, W., Burks, A.W.: The mathematical theory of communication (1951)

    Google Scholar 

  30. Sheng, W., Chen, S., Xiao, G., Mao, J., Zheng, Y.: A biometric key generation method based on semisupervised data clustering. IEEE Trans. Syst. Man Cybern. Syst. 45(9), 1205–1217 (2015)

    Article  Google Scholar 

  31. Sun, H., Yuao, T.: Curve aligning approach for gait authentication based on a wearable accelerometer. Physiol. Meas. 33(6), 1111 (2012)

    Article  Google Scholar 

  32. Theodoridis, S., Koutroumbas, K.: Pattern recognition, 4th edn. (2009)

    Google Scholar 

  33. Trung, N.T., Makihara, Y., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yagi, Y.: Phase registration in a gallery improving gait authentication. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)

    Google Scholar 

  34. Xu, W., Javali, C., Revadigar, G., Luo, C., Bergmann, N., Hu, W.: Gait-key: A gait-based shared secret key generation protocol for wearable devices. ACM Trans. Sens. Netw. (TOSN) 13(1), 6 (2017)

    Google Scholar 

  35. Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181(11), 2128–2138 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhao, Y., Zhou, S.: Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors 17(3), 478 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Korea NRF-2017R1D1A1B03035343 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lam Tran or Deokjai Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tran, L., Hoang, T., Nguyen, T., Choi, D. (2017). Improving Gait Cryptosystem Security Using Gray Code Quantization and Linear Discriminant Analysis. In: Nguyen, P., Zhou, J. (eds) Information Security. ISC 2017. Lecture Notes in Computer Science(), vol 10599. Springer, Cham. https://doi.org/10.1007/978-3-319-69659-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69659-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69658-4

  • Online ISBN: 978-3-319-69659-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics