Skip to main content

Search for Supersymmetry in the Multijet and Missing Transverse Momentum Channel in pp Collisions at 13 TeV

  • Chapter
  • First Online:
Theoretical and Experimental Approaches to Dark Energy and the Cosmological Constant Problem

Part of the book series: Springer Theses ((Springer Theses))

  • 504 Accesses

Abstract

As described in Chapter four, supersymmetry is a well motivated extension to the standard model. According to this theory, each particle in the standard model has a supersymmetric partner whose spin differs from the standard model particle by one-half unit. The naturalness principle suggests that the masses of the superparticles should be of the order of 1 TeV [13]; therefore, the superparticles should be within our reach at high energy colliders like the LHC at CERN. One of the supersymmetry signals with a relatively high cross section is the production of a pair of gluinos that decay to four or more hadronic jets in the final state. In this search, in addition to the above mentioned assumptions, we also assume that R-parity is conserved with the consequence that the lightest SUSY particle is stable [4] and perhaps weakly interacting. Therefore, it leaves our detectors undetected, resulting in a huge amount of missing energy. As a result, one possible signal that we can search for is characterized by significant missing energy and a large number of jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author list is given in Appendix B.

  2. 2.

    The activity variable is defined as the sum p T of PF candidates in an annulus outside the isolation cone up to  ΔR = 0.4 relative to the p T of the lepton. This variable is designed as a measure of hadronic activities around each lepton.

References

  1. S. Dimopoulos, G.F. Giudice, Phys. Lett. B 357, 573 (1995) [arXiv:hep-ph/9507282]

    Article  ADS  Google Scholar 

  2. R. Barbieri, D. Pappadopulo, JHEP 10, 061 (2009) [arXiv:0906.4546]

    Article  ADS  Google Scholar 

  3. M. Papucci, J.T. Ruderman, A. Weiler, JHEP 09, 035 (2012) [arXiv:1110.6926]

    Article  ADS  Google Scholar 

  4. G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978)

    Article  ADS  Google Scholar 

  5. CMS Collaboration, Phys. Lett. B 758, 152 (2016) [arXiv:1602.06581]

    Article  ADS  Google Scholar 

  6. CMS Collaboration, Phys. Rev. D 88, 052017 (2013) [arXiv:1301.2175]

    Article  ADS  Google Scholar 

  7. CMS Collaboration, Phys. Lett. B 725, 243 (2013) [arXiv:1305.2390]

    Article  ADS  Google Scholar 

  8. CMS Collaboration, JHEP 06, 055 (2014) [arXiv:1402.4770]

    ADS  Google Scholar 

  9. UA1 Collaboration, Phys. Lett. B 122, 103 (1983)

    Google Scholar 

  10. CMS Collaboration, JHEP (accepted) [arXiv:1605.04608]

    Google Scholar 

  11. J. Alwall et al., JHEP 07, 079 (2014) [arXiv:1405.0301]

    Article  ADS  Google Scholar 

  12. P. Nason, JHEP 11, 040 (2004) [arXiv:hep-ph/0409146]

    Article  ADS  Google Scholar 

  13. S. Frixione, P. Nason, C. Oleari, JHEP 11, 070 (2007) [arXiv:0709.2092]

    Article  ADS  Google Scholar 

  14. S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 09, 111 (2009) [arXiv:0907.4076]

    Article  ADS  Google Scholar 

  15. S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 06, 043 (2010) [arXiv:1002.2581]

    Article  ADS  Google Scholar 

  16. E. Re, Eur. Phys. J. C 71, 1547 (2011) [arXiv:1009.2450]

    Article  ADS  Google Scholar 

  17. T. Melia, P. Nason, R. Rontsch, G. Zanderighi, JHEP 11, 078 (2011) [arXiv:1107.5051]

    Article  ADS  Google Scholar 

  18. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  19. S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 09, 111 (2009) [arXiv:0907.4076] [Erratum: JHEP 02, 011 (2010)]

    Google Scholar 

  20. E. Re, Eur. Phys. J. C 71, 1547 (2011) [arXiv:1009.2450]

    Article  ADS  Google Scholar 

  21. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, JHEP 07, 079 (2014) [arXiv:1405.0301]

    Article  ADS  Google Scholar 

  22. T. Melia, P. Nason, R. Rontsch, G. Zanderighi, JHEP 11, 078 (2011) [arXiv:1107.5051]

    Article  ADS  Google Scholar 

  23. M. Beneke, P. Falgari, S. Klein, C. Schwinn, Nucl. Phys. B 855, 695 (2012) [arXiv:1109.1536]

    Article  ADS  Google Scholar 

  24. M. Cacciari, M. Czakon, M. Mangano, A. Mitov, P. Nason, Phys. Lett. B 710, 612 (2012) [arXiv:1111.5869]

    Article  ADS  Google Scholar 

  25. P. Bärnreuther, M. Czakon, A. Mitov, Phys. Rev. Lett. 109, 132001 (2012) [arXiv:1204.5201]

    Article  ADS  Google Scholar 

  26. M. Czakon, A. Mitov, JHEP 12, 054 (2012) [arXiv:1207.0236]

    Article  ADS  Google Scholar 

  27. M. Czakon, A. Mitov, JHEP 01, 080 (2013) [arXiv:1210.6832]

    Article  ADS  Google Scholar 

  28. M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 110, 252004 (2013) [arXiv:1303.6254]

    Article  ADS  Google Scholar 

  29. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 184, 208 (2013) [arXiv:1201.5896]

    Google Scholar 

  30. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011) [arXiv:1011.3540]

    Article  ADS  Google Scholar 

  31. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015) [arXiv:1410.3012]

    Article  ADS  Google Scholar 

  32. W. Beenakker, R. Höpker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997) [arXiv:hep-ph/9610490]

    Article  ADS  Google Scholar 

  33. A. Kulesza, L. Motyka, Phys. Rev. Lett. 102, 111802 (2009) [arXiv:0807.2405]

    Article  ADS  Google Scholar 

  34. A. Kulesza, L. Motyka, Phys. Rev. D 80, 095004 (2009) [arXiv:0905.4749]

    Article  ADS  Google Scholar 

  35. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, I. Niessen, JHEP 12, 041 (2009) [arXiv:0909.4418]

    Article  ADS  Google Scholar 

  36. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Int. J. Mod. Phys. A 26, 2637 (2011) [arXiv:1105.1110]

    Article  ADS  Google Scholar 

  37. D. Orbaker, J. Phys. Conf. Ser. 219, 032053 (2010)

    Article  Google Scholar 

  38. CMS Collaboration, Comparison of the fast simulation of CMS with the first LHC data, CMS Detector Performance Summary CMS-DP-2010-039, CERN, 2010

    Google Scholar 

  39. CMS Collaboration, Jet performance in pp collisions at \(\sqrt {s}=7\) Te V, CMS Physics Analysis Summary CMS-PAS-JME-10-003, CERN, 2010

    Google Scholar 

  40. R.D. Ball et al., JHEP 04, 040 (2015) [arXiv:1410.8849]

    Article  ADS  Google Scholar 

  41. S. Catani, D. de Florian, M. Grazzini, P. Nason, JHEP 07, 028 (2003) [arXiv:hep-ph/0306211]

    Article  ADS  Google Scholar 

  42. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, JHEP 04, 068 (2004) [arXiv:hep-ph/0303085]

    Article  ADS  Google Scholar 

  43. CMS Collaboration, Eur. Phys. J. C 73, 2677 (2013) [arXiv:1308.1586]

    Article  ADS  Google Scholar 

  44. J. Pumplin, D.R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, JHEP 07, 012 (2002) [arXiv:hep-ph/0201195]

    Article  ADS  Google Scholar 

  45. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002]

    Article  ADS  Google Scholar 

  46. R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Nucl. Phys. B 849, 296 (2011) [arXiv:1101.1300]

    Article  ADS  Google Scholar 

  47. S. Alekhin et al., The PDF4LHC Working Group Interim Report (2011) [arXiv:1101.0536]

    Google Scholar 

  48. M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, The PDF4LHC Working Group Interim Recommendations (2011) [arXiv:1101.0538]

    Google Scholar 

  49. Particle Data Group, K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  50. Z. Bern, G. Diana, L.J. Dixon, F.F. Cordero, S. Hoeche, H. Ita, D.A. Kosower, D. Maitre, K.J. Ozeren, Phys. Rev. D 84, 114002 (2011) [arXiv:1106.1423v2]

    Article  ADS  Google Scholar 

  51. J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, JHEP 03, 059 (2006) [arXiv:hep-ph/0508253]

    Article  ADS  Google Scholar 

  52. S. Ask, M.A. Parker, T. Sandoval, M.E. Shea, W.J. Stirling, JHEP 10, 058 (2011) [arXiv:1107.2803]

    Article  ADS  Google Scholar 

  53. Z. Bern, G. Diana, L.J. Dixon, F.F. Cordero, S. Hoeche, H. Ita, D.A. Kosower, D. Maitre, K.J. Ozeren, Phys. Rev. D 87, 034026 (2013) [arXiv:1206.6064]

    Article  ADS  Google Scholar 

  54. CMS Collaboration, JHEP 08, 155 (2011) [arXiv:1106.4503]

    ADS  Google Scholar 

  55. CMS Collaboration, Phys. Rev. Lett. 109, 171803 (2012) [arXiv:1207.1898]

    Article  ADS  Google Scholar 

  56. Particle Data Group, Phys. Rev. D 86, 010001 (2012)

    Google Scholar 

  57. CMS Collaboration, JINST 6, 11002 (2011) [arXiv:1107.4277]

    Article  ADS  Google Scholar 

  58. CMS Collaboration, JINST (submitted) [arXiv:1607.03663]

    Google Scholar 

  59. CMS Collaboration, JHEP 1110, 132 (2011) [arXiv:1107.4789]

    ADS  Google Scholar 

  60. SUS Data/MC Lepton Scale Factor Group, SUS Data/MC Lepton Scale Factors Muons [CMS Internal] (2015). https://twiki.cern.ch/twiki/bin/view/CMS/SUSLeptonSF#Muons_AN1

  61. J. Butterworth et al., J. Phys. G 43, 023001 (2016) [arXiv:1510.03865]

    Article  ADS  Google Scholar 

  62. CMS Statistics Committee, Asymmetric Error Bars for Poisson Event Counts [CMS Internal] (2015). https://twiki.cern.ch/twiki/bin/view/CMS/PoissonErrorBars

  63. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011) [arXiv:1007.1727] [Erratum: Eur. Phys. J. C 73, 2501 (2013)]

    Google Scholar 

  64. T. Junk, Nucl. Instrum. Methods A 434, 435 (1999) [arXiv:hep-ex/9902006]

    Article  ADS  Google Scholar 

  65. A.L. Read, J. Phys. G 28, 2693 (2002)

    Article  ADS  Google Scholar 

  66. ATLAS and CMS Collaborations, Procedure for the LHC Higgs boson search combination in Summer 2011, Tech. Rep. CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11 (2011)

    Google Scholar 

  67. CMS Collaboration, JHEP 05, 078 (2015) [arXiv:1502.04358]

    Google Scholar 

  68. C. Borschensky, M. Krämer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, X. Portell, Eur. Phys. J. C 74, 3174 (2014) [arXiv:1407.5066]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borzou, A. (2018). Search for Supersymmetry in the Multijet and Missing Transverse Momentum Channel in pp Collisions at 13 TeV. In: Theoretical and Experimental Approaches to Dark Energy and the Cosmological Constant Problem. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69632-4_7

Download citation

Publish with us

Policies and ethics