Skip to main content

Ring Signature Scheme from Multilinear Maps in the Standard Model

  • Conference paper
  • First Online:
Cloud Computing, Security, Privacy in New Computing Environments (CloudComp 2016, SPNCE 2016)

Abstract

A novel ring signature is constructed based on Garg-Gentry-Halevi (GGH) graded encoding system which is a candidate multilinear maps from ideal lattice, and we prove its security in standard model. Under the GGH graded decisional Diffie-Hellman (GDDH) assumption, the proposed ring signature guarantees the anonymity of signer. At the same time, the ring signature is the existentially unforgeable against adaptive chosen message attack under the GGH graded computational Diffie-Hellman (GCDH) assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  2. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4

    Chapter  Google Scholar 

  3. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret: theory and applications of ring signatures. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 164–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11685654_7

    Chapter  Google Scholar 

  4. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to Ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30

    Chapter  Google Scholar 

  5. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, Jan L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36

    Chapter  Google Scholar 

  6. Xiao, F.J., Liao, J., Zeng, G.H.: Threshold ring signature for wireless sensor networks. J. Commun. 32(3), 75–81 (2012)

    Google Scholar 

  7. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_34

    Chapter  Google Scholar 

  8. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)

    Article  Google Scholar 

  9. Wang, F.H., Hu, Y.P., Wang, C.X.: A lattice-based ring signature scheme from bonsai trees. J. Electron. Inf. Technol. 32(10), 2410–2413 (2010)

    Article  Google Scholar 

  10. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_2

    Chapter  Google Scholar 

  11. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures and identity based encryption in the standard model. Cryptology ePrint Archive: Report 2010/86 (2010)

    Google Scholar 

  12. Tian, M.M., Liu, L.S., Yang, W.: Efficient lattice-based ring signature scheme. Chin. J. Comput. 35(4), 712–716 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Presented at the Proceedings of the 40th Annual ACM Symposium on Theory of Computing. Victoria, British Columbia, Canada, pp. 120–131 (2008)

    Google Scholar 

  14. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  15. Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_1

    Chapter  Google Scholar 

  16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  18. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324(1), 71–90 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27

    Chapter  Google Scholar 

  20. Wang, H., Wu, L., Zheng, Z., Wang, Y.: Identity-based key-encapsulation mechanism from multilinear maps. Cryptology ePrint: Archive: Report 2013/836 (2013)

    Google Scholar 

  21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, pp. 545–554 (2013)

    Google Scholar 

  22. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_26

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Fund for the Graduate Innovation Program of Jiangsu Province (CXZZ13_0493), and the Natural Science Foundation of Universities of Jiangsu Province (13KJB520005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-zhang Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Hz. (2018). Ring Signature Scheme from Multilinear Maps in the Standard Model. In: Wan, J., et al. Cloud Computing, Security, Privacy in New Computing Environments. CloudComp SPNCE 2016 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-69605-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69605-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69604-1

  • Online ISBN: 978-3-319-69605-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics