Skip to main content

Charge Transfer States at Donor–Acceptor Heterojunctions

  • Chapter
  • First Online:
  • 557 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Organic solar cells rely on the conversion of a Frenkel exciton into free charges via a charge transfer state formed on a molecular donor-acceptor pair. These charge transfer states are strongly bound by Coulomb interactions, and yet efficiently converted into charge-separated states. In this chapter, we show how long-range molecular order and interfacial mixing generate homogeneous electrostatic forces that can drive charge separation and prevent minority-carrier trapping across a donor-acceptor interphase. Comparing a variety of small-molecule donor-fullerene combinations, we illustrate how tuning of molecular orientation and interfacial mixing leads to a tradeoff between photovoltaic gap and charge-splitting and detrapping forces, with consequences for the design of efficient photovoltaic devices. Drawing from both simulation and experimental results, we also investigate the empirical relationship between the temperature- and charge-density-dependent open-circuit voltage and charge transfer state energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.F. Eftaiha, J.-P. Sun, I.G. Hill, G.C. Welch, Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J. Mater. Chemis. A 2(5), 1201 (2014)

    Article  Google Scholar 

  2. P. Sonar, J.P.F. Lim, K.L. Chan, Organic non-fullerene acceptors for organic photovoltaics. Energ. Environ. Sci. 4(5), 1558 (2011)

    Article  Google Scholar 

  3. P.-L.T. Boudreault, A. Najari, M. Leclerc, Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23(3), 456–469 (2010)

    Article  Google Scholar 

  4. A. Rao, M.W.B. Wilson, J.M. Hodgkiss, S. Albert-Seifried, H. Bässler, R.H. Friend, Exciton fission and charge generation via triplet excitons in pentacene/C\(_{\text{60}}\) bilayers. J. Am. Chem. Soc. 132(36), 12698–12703 (2010)

    Google Scholar 

  5. R.S. Yost, J. Lee, M.W.B. Wilson, T. Wu, D.P. McMahon, R.R. Parkhurst, N.J. Thompson, D.N. Congreve, A. Rao, K. Johnson, M.Y. Sfeir, M.G. Bawendi, T.M. Swager, R.H. Friend, M.A. Baldo, T. Van Voorhis, A transferable model for singlet-fission kinetics. Nat. Chem. 6(6), 492–497 (2014)

    Google Scholar 

  6. K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5 (2014)

    Google Scholar 

  7. M.D. Perez, C. Borek, S.R. Forrest, M.E. Thompson, Molecular and morphological influences on the open-circuit voltages of organic photovoltaic devices. J. Am. Chem. Soc. 131(26), 9281–9286 (2009)

    Google Scholar 

  8. E.T. Hoke, K. Vandewal, J.A. Bartelt, W.R. Mateker, J.D. Douglas, R. Noriega, K.R. Graham, J.M.J. Fréchet, A. Salleo, M.D. McGehee, Recombination in polymer: fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V. Adv. Energ. Mater. 3(2), 220–230 (2013)

    Google Scholar 

  9. S.O. Jeon, K.S. Yook, B.D. Chin, Y.S. Park, J.Y. Lee, Improved open-circuit voltage and efficiency in organic solar cells using a phosphine oxide based interlayer material. Solar Energ. Mater. Solar Cells 94(8), 1389–1392 (2010)

    Google Scholar 

  10. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Y. Luping, W. Yue, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3(11), 649–653 (2009)

    Article  ADS  Google Scholar 

  11. C. Poelking, M. Tietze, C. Elschner, S. Olthof, D. Hertel, B. Baumeier, F. Würthner, K. Meerholz, K. Leo, D. Andrienko, Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14(4), 434–439 (2014)

    Article  ADS  Google Scholar 

  12. G. D’Avino, S. Mothy, L. Muccioli, C. Zannoni, L. Wang, J. Cornil, D. Beljonne, F. Castet, Energetics of electron-hole separation at P3ht/PCBM heterojunctions. J. Phys. Chem. C 117(25), 12981–12990 (2013)

    Google Scholar 

  13. J. Idé, R. Méreau, L. Ducasse, F. Castet, H. Bock, Y. Olivier, J. Cornil, D. Beljonne, G. D’Avino, O.M. Roscioni, L. Muccioli, C. Zannoni, Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136(7), 2911–2920 (2014)

    Google Scholar 

  14. K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer, J.D. Douglas, M. Schubert, W.R. Mateker, J.T. Bloking, G.F. Burkhard, A. Sellinger, J.M.J. Fréchet, A. Amassian, M.K. Riede, M.D. McGehee, D. Neher, A. Salleo, Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13(1), 63–68 (2013)

    Google Scholar 

  15. F. Provencher, N. Bérubé, A.W. Parker, G.M. Greetham, M. Towrie, C. Hellmann, M. Côté, N. Stingelin, C. Silva, S.C. Hayes, Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nat. Commun. 5 (2014)

    Google Scholar 

  16. B.A. Gregg, Entropy of charge separation in organic photovoltaic cells: the benefit of higher dimensionality. J. Phys. Chem. Lett. 2(24), 3013–3015 (2011)

    Article  Google Scholar 

  17. D. Caruso, A. Troisi, Long-range exciton dissociation in organic solar cells. Proc. Natl. Acad. Sci. 109(34), 13498–13502 (2012)

    Article  ADS  Google Scholar 

  18. S.R. Yost, T. Van Voorhis, Electrostatic effects at organic semiconductor interfaces: a mechanism for “Cold” exciton breakup. J. Phys. Chem. C 117(11), 5617–5625 (2013)

    Google Scholar 

  19. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 8(11), 904–909 (2009)

    Article  ADS  Google Scholar 

  20. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend, The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335(6074), 1340–1344 (2012)

    Google Scholar 

  21. D.P. McMahon, D.L. Cheung, A. Troisi, Why holes and electrons separate so well in polymer/fullerene photovoltaic cells. J. Phys. Chem. Lett. 2(21), 2737–2741 (2011)

    Article  Google Scholar 

  22. S. Gelinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, R.H. Friend, Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170), 512–516 (2014)

    Article  ADS  Google Scholar 

  23. E.R. Smith, Electrostatic energy in ionic crystals. Proc. R. Soc. Lond. A Math. Phys. Sci. 375(1763), 475–505 (1981)

    Google Scholar 

  24. J.G. Kirkwood, Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2(7), 351 (1934)

    Article  ADS  MATH  Google Scholar 

  25. P. Westacott, J.R. Tumbleston, S. Shoaee, S. Fearn, J.H. Bannock, J.B. Gilchrist, S. Heutz, J. deMello, M. Heeney, H. Ade, J. Durrant, D.S. McPhail, N. Stingelin, On the role of intermixed phases in organic photovoltaic blends. Energ. Environ. Sci. 6(9), 2756 (2013)

    Google Scholar 

  26. F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J.R. Durrant, Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3(2), 485 (2012)

    Google Scholar 

  27. C. Elschner, M. Schrader, R. Fitzner, A.A. Levin, P. Bäuerle, D. Andrienko, K. Leo, M. Riede, Molecular ordering and charge transport in a dicyanovinyl-substituted quaterthiophene thin film. RSC Adv. 3(30), 12117 (2013)

    Article  Google Scholar 

  28. T.M. Burke, M.D. McGehee, How high local charge-carrier mobility and an energy cascade in a three-phase bulk heterojunction enable> 90% quantum efficiency. Adv. Mater. 26(12), 1923–1928 (2014)

    Article  Google Scholar 

  29. Z.-K. Tan, K. Johnson, Y. Vaynzof, A.A. Bakulin, L.-L. Chua, P.K.H. Ho, R.H. Friend, Suppressing recombination in polymer photovoltaic devices via energy-level cascades. Adv. Mater. 25(30), 4131–4138 (2013)

    Google Scholar 

  30. B. Baumeier, D. Andrienko, M. Rohlfing, Frenkel and charge-transfer excitations in donor–acceptor complexes from many-body green’s functions theory. J. Chem. Theory. Comput. 8(8), 2790–2795 (2012)

    Google Scholar 

  31. K. Vandewal, Photo-generation and recombination of charge carriers in organic solar cells. Conference presentation, ICSM (Turku) (2014)

    Google Scholar 

  32. S.L. Smith, A.W. Chin, Ultrafast charge separation and nongeminate electron–hole recombination in organic photovoltaics. Phys. Chem. Chem. Phys. 16(38), 20305–20309 (2014)

    Article  Google Scholar 

  33. M. Schulze, M. Hänsel, P. Tegeder, Hot excitons increase the donor/acceptor charge transfer yield. J. Phys. Chem. C 118(49), 28527–28534 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Poelking .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Poelking, C.R. (2018). Charge Transfer States at Donor–Acceptor Heterojunctions. In: The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69599-0_6

Download citation

Publish with us

Policies and ethics