Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 493 Accesses

Abstract

In this chapter, we develop an embedding technique for the perturbative classical description of molecular excitations in organic solids—notably charge, charge transfer, and excitonic states. As an essential feature of the technique, it rigorously accounts for the long-ranged interaction of charged molecular excitations with a net-quadrupolar environment. The conditionality of the underlying interaction sum is removed through appropriately chosen shape corrections that impose bulk or thin-film conditions. The aperiodic excitation and accompanying polarization cloud are embedded in a periodic molecular background that gives rise to mesoscale fields acting upon the polarization cloud. The scheme is designed to quantitatively describe the density of states using large atomistic models. To tackle the required system sizes, it makes use of a classical expansion of the molecular field and field response in terms of distributed multipoles and polarizabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Yost, T. Van Voorhis, Electrostatic effects at organic semiconductor interfaces: a mechanism for “cold” exciton breakup. J. Phys. Chem. C 117(11), 5617–5625 (2013)

    Article  Google Scholar 

  2. M.S. Ryno, C. Risko, J.L. Brèdas, Impact of molecular packing on electronic polarization in organic crystals: the case of pentacene versus TIPS-pentacene. J. Am. Chem. Soc. 136(17), 6421–6427 (2014)

    Article  Google Scholar 

  3. J. Idé, R. Méreau, L. Ducasse, F. Castet, H. Bock, Y. Olivier, J. Cornil, D. Beljonne, G. D’Avino, O.M. Roscioni, L. Muccioli, C. Zannoni, Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136(7), 2911–2920 (2014)

    Article  Google Scholar 

  4. F. May, B. Baumeier, C. Lennartz, D. Andrienko, Can lattice models predict the density of states of amorphous organic semiconductors? Phys. Rev. Lett. 109(13) 2012

    Google Scholar 

  5. P. Kordt, Jeroen J.M. van der Holst, Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25(13), 1955–1971 (2015)

    Article  Google Scholar 

  6. I. Yavuz, B.N. Martin, J. Park, K.N. Houk, Theoretical study of the molecular ordering, paracrystallinity, and charge mobilities of oligomers in different crystalline phases. J. Am. Chem. Soc. 137(8), 2856–2866 (2015)

    Google Scholar 

  7. V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory. Comput. 7(10), 3335–3345 (2011)

    Google Scholar 

  8. A.J. Stone, Distributed multipole analysis: stability for large basis sets. J. Chem. Theory. Comput. 1(6), 1128–1132 (2005)

    Google Scholar 

  9. G. D’Avino, L. Muccioli, C. Zannoni, D. Beljonne, Z.G. Soos, Electronic polarization in organic crystals: a comparative study of induced dipoles and intramolecular charge redistribution schemes. J. Chem. Theory. Comput. 10(11), 4959–4971 (2014)

    Google Scholar 

  10. B.T. Thole, Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59(3), 341–350 (1981)

    Article  ADS  Google Scholar 

  11. P. Gemünden, C. Poelking, K. Kremer, D. Andrienko, K.C. Daoulas, Nematic ordering, conjugation, and density of states of soluble polymeric semiconductors. Macromolecules 46(14), 5762–5774 (2013)

    Google Scholar 

  12. S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R.L. Johnson, A. Vollmer, J.P. Rabe, N. Koch, Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat. Mater. 7(4), 326–332 (2008)

    Google Scholar 

  13. G. Heimel, I. Salzmann, S. Duhm, N. Koch, Design of organic semiconductors from molecular electrostatics. Chem. Mater. 23(3), 359–377 (2011)

    Google Scholar 

  14. C. Poelking, M. Tietze, C. Elschner, S. Olthof, D. Hertel, B. Baumeier, F. Würthner, K. Meerholz, K. Leo, D. Andrienko, Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14(4), 434–439 (2014)

    Google Scholar 

  15. R. Banerjee, J. NovĂ k, C. Frank, C. Lorch, A. Hinderhofer, A. Gerlach, F. Schreiber, Evidence for kinetically limited thickness-dependent phase separation in organic thin-film blends. Phys. Rev. Lett. 110(18), 2013

    Google Scholar 

  16. D. Wynands, M. Erber, R. Rentenberger, M. Levichkova, K. Walzer, K.-J. Eichhorn, M. Stamm, Spectroscopic ellipsometry characterization of vacuum-deposited organic films for the application in organic solar cells. Org. Electron. 13(5), 885–893 (2012)

    Article  Google Scholar 

  17. C. Poelking, Charge transport simulations in polymeric semiconductors. M.Sc. thesis, University of Heidelberg, 2013

    Google Scholar 

  18. A.J. Stone, M. Alderton, Distributed multipole analysis. Mol. Phys. 56(5), 1047–1064 (1985)

    Article  ADS  Google Scholar 

  19. A.J. Stone, Distributed polarizabilities. Mol. Phys. 56(5), 1065–1082 (1985)

    Article  ADS  Google Scholar 

  20. A.J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 1997)

    Google Scholar 

  21. Christof Hättig, Recurrence relations for the direct calculation of spherical multipole interaction tensors and Coulomb-type interaction energies. Chem. Phys. Lett. 260(3–4), 341–351 (1996)

    Article  ADS  Google Scholar 

  22. U.C. Singh, P.A. Kollman, An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5(2), 129–145 (1984)

    Google Scholar 

  23. L.E. Chirlian, M.M. Francl, Atomic charges derived from electrostatic potentials: a detailed study. J. Comput. Chem. 8(6), 894–905 (1987)

    Google Scholar 

  24. C.M. Breneman, K.B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11(3), 361–373 (1990)

    Google Scholar 

  25. T.P. Van Duijnen, M. Swart, Molecular and atomic polarizabilities: Thole’s model revisited. J. Phys. Chem. A 102(14), 2399–2407 (1998)

    Google Scholar 

  26. J. Applequist, J.R. Carl, K.K. Fung, Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94(9), 2952–2960 (1972)

    Google Scholar 

  27. P. Ren, J.W. Ponder, Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107(24), 5933–5947 (2003)

    Google Scholar 

  28. C. Hättig, B.A. Heß, Calculation of orientation-dependent double-tensor moments for Coulomb-type intermolecular interactions. Mol. Phys. 81(4), 813–824 (1994)

    Google Scholar 

  29. P.P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3), 253–287 (1921)

    Article  ADS  MATH  Google Scholar 

  30. M. Leslie, DL_multi–A molecular dynamics program to use distributed multipole electrostatic models to simulate the dynamics of organic crystals. Mol. Phys. 106(12), 1567–1578 (2008)

    Article  ADS  Google Scholar 

  31. W. Smith, Point Multipoles in the Ewald Summation (Revisited). CCP5 Newsletter. 46 1998

    Google Scholar 

  32. E.R. Smith, Electrostatic energy in ionic crystals, in Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 375 (1981), no. 1763 pp. 475–505

    Google Scholar 

  33. P.S. Crozier, R.L. Rowley, E. Spohr, D. Henderson, Comparison of charged sheets and corrected 3d Ewald calculations of long-range forces in slab geometry electrolyte systems with solvent molecules. J. Chem. Phys. 112(21), 9253 (2000)

    Google Scholar 

  34. S.W. De Leeuw, J.W. Perram, Electrostatic lattice sums for semi-infinite lattices. Mol. Phys. 37(4), 1313–1322 (1979)

    Google Scholar 

  35. G.J. Kirkwood, Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2(7), 351 (1934)

    Google Scholar 

  36. K. Takae, A. Onuki, Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method. J. Chem. Phys. 139(12), 124108 (2013)

    Google Scholar 

  37. M. Oehzelt, N. Koch, G. Heimel, Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Poelking .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Poelking, C.R. (2018). Long-Range Polarized Embedding of Electronic Excitations. In: The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69599-0_3

Download citation

Publish with us

Policies and ethics