Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 533 Accesses

Abstract

A core challenge in computational materials science is the prediction of materials properties from first principles and hence—in the context of molecular materials—from input chemical structures. In this chapter, we present a workflow for particle-based microscopic simulations of organic semiconductors that aims to achieve just that. It is tailored to the description of non-adiabatic charge transport. The workflow can be broken down into three steps: First, the material morphology is simulated at an atomistic level, using molecular dynamics or other particle-based models, including coarse-graining and backmapping techniques. Second, a charge transport network is constructed from the simulated morphology, built on a rate-based description, where the parametrization of the rates is achieved on a quantum or quantum-classical level. Third, kinetic Monte-Carlo simulations are used to derive macroscopic observables, notably charge-carrier mobilities, or simulate current-voltage characteristics of realistic devices either directly or via parametrization of continuous drift-diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Troisi, D.L. Cheung, D. Andrienko, Charge transport in semiconductors with multiscale conformational dynamics. Phys. Rev. Lett. 102(11), 116602 (2009)

    Article  ADS  Google Scholar 

  2. T. Vehoff, Y.S. Chung, K. Johnston, A. Troisi, D.Y. Yoon, D. Andrienko, Charge transport in self-assembled semiconducting organic layers: role of dynamic and static disorder. J. Phys. Chem. C 114(23), 10592–10597 (2010)

    Article  Google Scholar 

  3. D.P. McMahon, A. Troisi, Organic semiconductors: impact of disorder at different timescales. Chem. Phys. Chem. 11(10), 2067–2074 (2010)

    Google Scholar 

  4. V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7(10), 3335–3345 (2011)

    Article  Google Scholar 

  5. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004). ISBN 0521782856

    Book  MATH  Google Scholar 

  6. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure theory (Dover Publications, New York, 1996). ISBN 0486691861

    Google Scholar 

  7. R. Ditchfield, Self-consistent molecular-orbital methods. IX. an extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(2), 724 (1971)

    Article  ADS  Google Scholar 

  8. D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications. Computational Science Series, 2nd edn. (Academic Press, San Diego, 2002). ISBN 0122673514

    Google Scholar 

  9. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984)

    Article  ADS  Google Scholar 

  10. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  ADS  Google Scholar 

  11. H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  ADS  Google Scholar 

  12. W.L, Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)

    Google Scholar 

  13. D.J. Wales, J.P.K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  14. C. Poelking, D. Andrienko, Effect of polymorphism, regioregularity and paracrystallinity on charge Transport in Poly(3-hexylthiophene) [P3ht] nanofibers. Macromolecules 46(22), 8941–8956 (2013)

    Article  ADS  Google Scholar 

  15. C. Poelking, Charge Transport Simulations in Polymeric Semiconductors, MSc thesis, University of Heidelberg, 2013

    Google Scholar 

  16. D. Wynands, M. Erber, R. Rentenberger, M. Levichkova, K. Walzer, K.-J. Eichhorn, M. Stamm, Spectroscopic ellipsometry characterization of vacuum-deposited organic films for the application in organic solar cells. Org. Electron. 13(5), 885–893 (2012)

    Article  Google Scholar 

  17. K. Kremer, F. Müller-Plathe, Multiscale simulation in polymer science. Mol. Simul. 28(8–9), 729–750 (2002)

    Article  Google Scholar 

  18. A.P. Lyubartsev, A. Laaksonen, Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys. Rev. E 52(4), 3730–3737 (1995)

    Article  ADS  Google Scholar 

  19. S. Izvekov, G.A. Voth, A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109(7), 2469–2473 (2005)

    Article  Google Scholar 

  20. M.S. Shell, The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129(14), 144108 (2008)

    Article  ADS  Google Scholar 

  21. D.M. Huang, R. Faller, K. Do, A.J. Moulé, Coarse-grained computer simulations of polymer/fullerene bulk heterojunctions for organic photovoltaic applications. J. Chem. Theory Comput. 6(2), 526–537 (2010)

    Article  Google Scholar 

  22. E. Jankowski, H.S. Marsh, A. Jayaraman, Computationally linking molecular features of conjugated polymers and fullerene derivatives to bulk heterojunction morphology. Macromolecules 46(14), 5775–5785 (2013)

    Article  ADS  Google Scholar 

  23. K.N. Schwarz, T.W. Kee, D.M. Huang, Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures. Nanoscale 5(5), 2017 (2013)

    Article  ADS  Google Scholar 

  24. A. Lukyanov, A. Malafeev, V. Ivanov, H.-L. Chen, K. Kremer, D. Andrienko, Solvated poly-(phenylene vinylene) derivatives: conformational structure and aggregation behavior. J. Mater. Chem. 20(46), 10475 (2010)

    Article  Google Scholar 

  25. V. Rühle, J. Kirkpatrick, D. Andrienko, A multiscale description of charge transport in conjugated oligomers. J. Chem. Phys. 132(13), 134103–134109 (2010)

    Article  ADS  Google Scholar 

  26. P. Gemünden, C. Poelking, K. Kremer, D. Andrienko, K.C. Daoulas, Nematic ordering, conjugation, and density of states of soluble polymeric semiconductors. Macromolecules 46(14), 5762–5774 (2013)

    Article  ADS  Google Scholar 

  27. P. Gemünden, K.C. Daoulas, Fluctuation spectra in polymer nematics and Frank elastic constants: a coarse-grained modelling study. Soft Matter 11(3), 532–544 (2015)

    Article  Google Scholar 

  28. P. Gemünden, C. Poelking, K. Kremer, K. Daoulas, D. Andrienko, Effect of mesoscale ordering on the density of states of polymeric semiconductors. Macromol. Rapid Commun. 36(11), 1047–1053 (2015)

    Article  Google Scholar 

  29. V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd edn. (Wiley-VCH, 2011). revised and enlarged edition edition, ISBN 3527407324

    Google Scholar 

  30. J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Charge-transfer and energy-transfer processes in \(\pi \)-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104(11), 4971–5004 (2004)

    Article  Google Scholar 

  31. A. Troisi, Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40(5), 2347 (2011)

    Article  Google Scholar 

  32. R.A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24(5), 966 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  33. F. May, Charge-Transport Simulations in Organic Semiconductors. Ph.D. thesis, Johannes-Gutenberg-Universität Mainz, 2012

    Google Scholar 

  34. J. Jortner, Temperature-dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64(12), 4860 (1976)

    Article  ADS  Google Scholar 

  35. K. Asadi, A.J. Kronemeijer, T. Cramer, L.J.A. Koster, P.W.M. Blom, D.M. de Leeuw, Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density. Nat. Commun. 4, 1710 (2013)

    Article  Google Scholar 

  36. H. Grabert, U. Weiss, Quantum tunneling rates for asymmetric double-well systems with ohmic dissipation. Phys. Rev. Lett. 54(15), 1605–1608 (1985)

    Article  ADS  Google Scholar 

  37. P.A.M. Fisher, A.T. Dorsey, Dissipative quantum tunneling in a biased double-well system at finite temperatures. Phys. Rev. Lett. 54(15), 1609–1612 (1985)

    Article  ADS  Google Scholar 

  38. N. Vukmirovic, L.-W. Wang, Density of states and wave function localization in disordered conjugated polymers: a large scale computational study. J. Phys. Chem. B 115(8), 1792–1797 (2011)

    Article  Google Scholar 

  39. T. Liu, A. Troisi, Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24(7), 925–933 (2014)

    Article  Google Scholar 

  40. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51(19), 12947–12957 (1995)

    Article  ADS  Google Scholar 

  41. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Aernouts, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(11), 7260–7268 (1998)

    Article  ADS  Google Scholar 

  42. H. Ma, T. Qin, A. Troisi, Electronic excited states in amorphous MEH-PPV polymers from large-scale first principles calculations. J. Chem. Theory Comput. 10(3), 1272–1282 (2014)

    Article  Google Scholar 

  43. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, W. Qin, The diabatic picture of electron transfer, reaction barriers, and molecular dynamics. Annu. Rev. Phys. Chem. 61(1), 149–170 (2010)

    Article  Google Scholar 

  44. W. Qin, T. Van Voorhis, Extracting electron transfer coupling elements from constrained density functional theory. J. Chem. Phys. 125(16), 164105 (2006)

    Article  ADS  Google Scholar 

  45. B. Baumeier, J. Kirkpatrick, D. Andrienko, Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys. Chem. Chem. Phys. 12(36), 11103 (2010)

    Article  Google Scholar 

  46. J. Kirkpatrick, An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int. J. Quantum Chem. 108(1), 51–56 (2008)

    Article  ADS  Google Scholar 

  47. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)

    Article  Google Scholar 

  48. D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  49. K.A. Fichthorn, W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95(2), 1090 (1991)

    Article  ADS  Google Scholar 

  50. A. Lukyanov, D. Andrienko, Extracting nondispersive charge carrier mobilities of organic semiconductors from simulations of small systems. Phys. Rev. B 82(19), 193202 (2010)

    Article  ADS  Google Scholar 

  51. B. Baumeier, O. Stenzel, C. Poelking, D. Andrienko, V. Schmidt, Stochastic modeling of molecular charge transport networks. Phys. Rev. B 86(18) (2012)

    Google Scholar 

  52. S. Stodtmann, R.M. Lee, C.K.F. Weiler, A. Badinski, Numerical simulation of organic semiconductor devices with high carrier densities. J. Appl. Phys. 112(11), 114909 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Poelking .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Poelking, C.R. (2018). Particle-Based Models of Organic Semiconductors. In: The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69599-0_2

Download citation

Publish with us

Policies and ethics