Layered Catalyst Compositions for Photo-Treating of Industrial Effluents

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

A highly active catalyst is required in chemical industries’l applications to significantly optimize the potential and the reaction rate of reaction. Much attention has, therefore, been paid to apply the heterogeneous catalysis system, with the objectives to optiize the catalytic selectivity and ease the separation process. Nevertheless, there are still great challenges to significantly increase the catalytic activities of heterogeneous catalysis which includes conductivity, stability, separation electrochemically active surface area, intrinsic catalytic activities, electronic structure, charge transport phase, diffusion rate, and resistance. Therefore, layered heterogeneous catalysis system has been attracted some interests owing to its unique architectures, synergistic effects, mechanical stability and electronic structure/interactions. This chapter highlights the important, general principle, material design, and hypothesis of layered catalysis system. The intrinsic properties, characterization, and catalytic activities of layered catalysis have been further discussed with regards to different categories including metal/metal oxide-layered catalyst, hydroxide-layered catalyst, nanocarbon-layered catalyst and clay-layered catalyst. Several examples of chemical industry applications of layered catalysts, including hydrocarbon oxidation, water oxidation, hydrocarbon reformation, hydrocarbon esterification, hydrocarbon cracking, and glucose production, synthesis of nanocarbon, and production of biaryl compounds have been brought in detail.

References

  1. Aghakhani, M. S., Khodadadi, A. A., Najafi, S., & Mortazavi, Y. (2014). Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica–alumina catalyst. Journal of Industrial and Engineering Chemistry, 20(5), 3037–3045.CrossRefGoogle Scholar
  2. Aw, M. S., Črnivec, I. G. O., & Pintar, A. (2014). Tunable ceria–zirconia support for nickel–cobalt catalyst in the enhancement of methane dry reforming with carbon dioxide. Catalysis Communications, 52, 10–15.CrossRefGoogle Scholar
  3. Bagheri, S., & Julkapli, N. M. (2016). Mo3VOx catalyst in biomass conversion: A review in structural evolution and reaction pathways. International Journal of Hydrogen Energy, 42(4), 2116–2126.CrossRefGoogle Scholar
  4. Cimenler, U., Joseph, B., & Kuhn, J. N. (2016). Effect of zeolite membrane shell thickness on reactant selectivity for hydrocarbon steam reforming using layered catalysts. Energy & Fuels, 30(7), 5300–5308.CrossRefGoogle Scholar
  5. Dong, S., Dao, A. Q., Zheng, B., Tan, Z., Fu, C., Liu, H., et al. (2015). One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochimica Acta, 152, 195–201.CrossRefGoogle Scholar
  6. Dong, X., Liu, S., Song, H., & Gu, P. (2017). Growth of large-area, few-layer graphene by femtosecond pulsed laser deposition with double-layer Ni catalyst. Journal of Materials Science, 52(4), 2060–2065.CrossRefGoogle Scholar
  7. Habibi, N., Wang, Y., Arandiyan, H., & Rezaei, M. (2016). Biogas Reforming for hydrogen production: A new path to high-performance nickel catalysts supported on magnesium aluminate spinel. ChemCatChem, 8(23), 3600–3610.CrossRefGoogle Scholar
  8. Hamid, O., Chari, M. A., Van Nguyen, C., Chen, J. E., Alshehri, S. M., Yanmaz, E., … & Wu, K. C. W. (2017). ZnO-loaded mesoporous silica (KIT-6) as an efficient solid catalyst for production of various substituted quinoxalines. Catalysis Communications, 90, 111–115.Google Scholar
  9. Hardin, W. G., Mefford, J. T., Slanac, D. A., Patel, B. B., Wang, X., Dai, S., … & Stevenson, K. J. (2014). Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chemistry of Materials, 26(11), 3368–3376.Google Scholar
  10. He, S., An, Z., Wei, M., Evans, D. G., & Duan, X. (2013). Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chemical Communications, 49(53), 5912–5920.CrossRefGoogle Scholar
  11. He, C., Zhang, J. J., & Shen, P. K. (2014). Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. Journal of Materials Chemistry A, 2(9), 3231–3236.CrossRefGoogle Scholar
  12. Julkapli, N. M., & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 40(2), 948–979.CrossRefGoogle Scholar
  13. Jung, K. N., Jung, J. H., Im, W. B., Yoon, S., Shin, K. H., & Lee, J. W. (2013). Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal–air batteries. ACS Applied Materials & Interfaces, 5(20), 9902–9907.CrossRefGoogle Scholar
  14. Katheria, S., Gupta, A., Deo, G., & Kunzru, D. (2016). Effect of calcination temperature on stability and activity of Ni/MgAl2O4 catalyst for steam reforming of methane at high pressure condition. International Journal of Hydrogen Energy, 41(32), 14123–14132.CrossRefGoogle Scholar
  15. Li, Z., Kathiraser, Y., Ashok, J., Oemar, U., & Kawi, S. (2014a). Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO2 reforming of CH4. Langmuir, 30(48), 14694–14705.CrossRefGoogle Scholar
  16. Li, C., Wei, M., Evans, D. G., & Duan, X. (2014b). Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small, 10(22), 4469–4486.CrossRefGoogle Scholar
  17. Long, X., Li, J., Xiao, S., Yan, K., Wang, Z., Chen, H., et al. (2014). A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angewandte Chemie, 126(29), 7714–7718.CrossRefGoogle Scholar
  18. Luo, J., Im, J. H., Mayer, M. T., Schreier, M., Nazeeruddin, M. K., Park, N. G., … & Grätzel, M. (2014). Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 345(6204), 1593–1596.Google Scholar
  19. Ma, G., Yang, M., Li, C., Tan, H., Deng, L., Xie, S., … & Song, Y. (2016). Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochimica Acta, 220, 545–553.Google Scholar
  20. Molinari, V., Giordano, C., Antonietti, M., & Esposito, D. (2014). Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers. Journal of the American Chemical Society, 136(5), 1758–1761.CrossRefGoogle Scholar
  21. Moliner, M., Martínez, C., & Corma, A. (2015). Multipore zeolites: Synthesis and catalytic applications. Angewandte Chemie International Edition, 54(12), 3560–3579.CrossRefGoogle Scholar
  22. Morales, G., Osatiashtiani, A., Hernández, B., Iglesias, J., Melero, J. A., Paniagua, M., … & Wilson, K. (2014). Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chemical Communications, 50(79), 11742–11745.Google Scholar
  23. Nassar, M. Y., Ahmed, I. S., & Samir, I. (2014). A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 329–334.CrossRefGoogle Scholar
  24. Nguyen, N. S., Das, G., & Yoon, H. H. (2016). Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosensors & Bioelectronics, 77, 372–377.CrossRefGoogle Scholar
  25. Nieva, M. A., Villaverde, M. M., Monzón, A., Garetto, T. F., & Marchi, A. J. (2014). Steam-methane reforming at low temperature on nickel-based catalysts. Chemical Engineering Journal, 235, 158–166.CrossRefGoogle Scholar
  26. Park, H. W., Lee, D. U., Park, M. G., Ahmed, R., Seo, M. H., Nazar, L. F., et al. (2015). Perovskite–nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. Chemsuschem, 8(6), 1058–1065.CrossRefGoogle Scholar
  27. Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews, 43(22), 7548–7561.CrossRefGoogle Scholar
  28. Ratso, S., Kruusenberg, I., Vikkisk, M., Joost, U., Shulga, E., Kink, I., … & Tammeveski, K. (2014). Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 73, 361–370.Google Scholar
  29. Rezlescu, N., Rezlescu, E., Popa, P. D., Doroftei, C., & Ignat, M. (2014). Scandium substituted nickel–cobalt ferrite nanoparticles for catalyst applications. Applied Catalysis, B: Environmental, 158, 70–75.CrossRefGoogle Scholar
  30. Saikia, B., Boruah, P. R., Ali, A. A., & Sarma, D. (2015). ‘On-water’organic synthesis: A green, highly efficient, low cost and reusable catalyst system for biaryl synthesis under aerobic conditions at room temperature. RSC Advances, 5(63), 50655–50659.CrossRefGoogle Scholar
  31. Sanchez, E. A., & Comelli, R. A. (2014). Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina. International Journal of Hydrogen Energy, 39(16), 8650–8655.CrossRefGoogle Scholar
  32. Scheuermann, G. M., Rumi, L., Steurer, P., Bannwarth, W., & Mülhaupt, R. (2009). Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. Journal of the American Chemical Society, 131(23), 8262–8270.CrossRefGoogle Scholar
  33. Sengodan, S., Choi, S., Jun, A., Shin, T. H., Ju, Y. W., Jeong, H. Y., … & Kim, G. (2015). Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 14(2), 205–209.Google Scholar
  34. Shirakawa, S., Wu, X., Liu, S., & Maruoka, K. (2016). Catalytic asymmetric synthesis of axially chiral 2-amino-1, 1′-biaryl compounds by phase-transfer-catalyzed kinetic resolution and desymmetrization. Tetrahedron, 72(34), 5163–5171.CrossRefGoogle Scholar
  35. Sim, U., Yang, T. Y., Moon, J., An, J., Hwang, J., Seo, J. H., … & Hong, B. H. (2013). N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy & Environmental Science, 6(12), 3658–3664.Google Scholar
  36. Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the development of advanced catalysts. Chemical Reviews, 113(8), 5782–5816.CrossRefGoogle Scholar
  37. Talebi, R., Khademolhoseini, S., & Rahnamaeiyan, S. (2016). Preparation and characterization of the magnesium aluminate nanoparticles via a green approach and its photocatalyst application. Journal of Materials Science: Materials in Electronics, 27(2), 1427–1432.Google Scholar
  38. Tang, C., Zhai, Z., Li, X., Sun, L., & Bai, W. (2016). Sustainable production of acetaldehyde from lactic acid over the magnesium aluminate spinel. Journal of the Taiwan Institute of Chemical Engineers, 58, 97–106.CrossRefGoogle Scholar
  39. Tian, G. L., Zhao, M. Q., Yu, D., Kong, X. Y., Huang, J. Q., Zhang, Q., et al. (2014). Nitrogen-doped graphene/carbon nanotube hybrids. In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small, 10(11), 2251–2259.CrossRefGoogle Scholar
  40. Verheyen, E., Sree, S. P., Thomas, K., Dendooven, J., De Prins, M., Vanbutsele, G., … & Martens, J. A. (2014). Catalytic activation of OKO zeolite with intersecting pores of 10-and 12-membered rings using atomic layer deposition of aluminium. Chemical Communications, 50(35), 4610–4612.Google Scholar
  41. Wang, R. X., Fan, J. J., Fan, Y. J., Zhong, J. P., Wang, L., Sun, S. G., et al. (2014a). Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale, 6(24), 14999–15007.CrossRefGoogle Scholar
  42. Wang, C., Zhang, D., Fang, C., Ge, Q., & Xu, H. (2014b). Synthesis of gasoline from syngas in a dual layer catalyst system. Fuel, 134, 11–16.CrossRefGoogle Scholar
  43. Wang, J., Zong, Y., Fu, R., Niu, Y., Yue, G., Quan, Z., … & Pan, Y. (2014c). Poly (4-vinylpyridine) supported acidic ionic liquid: A novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4 (1H)-ones under ultrasonic irradiation. Ultrasonics Sonochemistry, 21(1), 29–34.Google Scholar
  44. Xie, D., McCusker, L. B., Baerlocher, C., Zones, S. I., Wan, W., & Zou, X. (2013). SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. Journal of the American Chemical Society, 135(28), 10519–10524.CrossRefGoogle Scholar
  45. Yan, H., Cheng, H., Yi, H., Lin, Y., Yao, T., Wang, C., … & Lu, J. (2015). Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. Journal of the American Chemical Society, 137(33), 10484–10487.Google Scholar
  46. Yang, Y., Fei, H., Ruan, G., Xiang, C., & Tour, J. M. (2014). Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers. ACS Nano, 8(9), 9518–9523.CrossRefGoogle Scholar
  47. Zheng, Y., Li, M., Harold, M., & Luss, D. (2015). Enhanced low-temperature NOx conversion by high-frequency hydrocarbon pulsing on a dual layer LNT-SCR catalyst. SAE International Journal of Engines, 8(2015-01-0984), 1117–1125.Google Scholar
  48. Zheng, Y., Liu, Y., Harold, M. P., & Luss, D. (2014). LNT–SCR dual-layer catalysts optimized for lean NOx reduction by H2 and CO. Applied Catalysis, B: Environmental, 148, 311–321.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nurhidayatullaili Muhd Julkapli
    • 1
  • Samira Bagheri
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations