Advertisement

Solar-Driven, Highly Stable Photocatalyst System for Mitigation of Organic Pollutants via Mixed Phase Titania

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In most cases, the combination of both anatase (up to 80%) and rutile (up to 20%) structures in a mixed phase titania semiconductor resulted in a better photocatalytic performance compared to the pure phase. The improvement from anatase to rutile is brought about by the enhanced transportation of photo-generated electrons. This consequently results in improved efficiency of the photoelectric and photocurrent conversion. This chapter highlights the effects of the morphology, particle size, and crystal structure of the mixed phase titania toward the photodegradation of water pollutants. It was demonstrated that the synergistic effect between anatase and rutile titania due to the interfacial electron transfer from rutile to anatase improving the photocurrent, as well as the overall conversion efficiency of the anatase photo-anodes. The morphologies of mixed phase titania also contributed to the final photodegradation properties. The charge and electron transfer of mixed phase titania improved the one-dimensional structure. This consequently enables photodegradation at the visible light range.

References

  1. Aman, N., Das, N. N., & Mishra, T. (2016). Effect of N-doping on visible light activity of Titania-SiO2 mixed oxide photocatalysts. Journal of Environmental Chemical Engineering, 4(1), 191–196.CrossRefGoogle Scholar
  2. Bagheri, S., Muhd Julkapli, N., & Bee Abd Hamid, S. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. Scientific World Journal, 727496.Google Scholar
  3. Bagheri, S., Muhd Julkapli, N., & Bee Abd Hamid, S. (2015). Functionalized activated carbon derived from biomass for photocatalysis applications perspective. International Journal of Photoenergy, 218743.Google Scholar
  4. Balcerski, W. C., Ryu, S. Y., & Hoffmann, M. R. (2015). Photocatalytic hydrogen production with visible light using nanocomposites of CdS and Ni on niobium oxide. Separation and Purification Technology, 156, 916–921.CrossRefGoogle Scholar
  5. Bear, J. C., Gomez, V., Kefallinos, N. S., Barron, A. R., & Dunnill, C. W. (2015). Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands. Journal of Colloid and Interface Science, 460, 29–35.CrossRefGoogle Scholar
  6. Benjaram, M. R., Ataullah, K., Pandian, L., Mimoun, A., Stéphane, L., & Jean-Claude, V. (2005). Structural characterization of nanosized CeO2−SiO2, CeO2−Titania, and CeO2−ZrO2 catalysts by XRD Raman, and HREM Techniques. Journal of Physics Chemistry B, 109(8), 3355–3363.CrossRefGoogle Scholar
  7. Bethi, B., Sonawane, S. H., Rohit, G. S., Holkar, C. R., Pinjari, D. V., Bhanvase, B. A., & Pandit, A. B. (2016). Investigation of Titania photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP. Ultrasonics Sonochemistry, 28, 150–160.CrossRefGoogle Scholar
  8. Bo, S., Ettireddy, P. R., & Panagiotis, G. S. (2005). Visible light Cr(VI) reduction and organic chemical oxidation by Titania photocatalysis. Environmental Science Technology, 39(16), 6251–6259.CrossRefGoogle Scholar
  9. Cheng, X., Cheng, Q., Li, B., Liu, H., & Wang, X. (2015). One-step construction of N/Ti3+ codoped Titania nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochimica Acta, 186, 442–448.CrossRefGoogle Scholar
  10. Cláudia Gomes, S., Raquel, J., Tiziana, M., Raffaele, M., & Hermenegildo, G. (2011). Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of Titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. Journal of American Chemical Society, 133(3), 595–602.CrossRefGoogle Scholar
  11. Di, J., Xia, J., Ji, M., Chen, Z., & Li, H. (2016). Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Applied Catalysis, B: Environmental, 183, 254–262.CrossRefGoogle Scholar
  12. Di, L., Hajime, H., Shunichi, H., & Naoki, O. (2005). Visible-light-driven N−F-codoped Titania photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization. Chemistry Materials, 17(10), 2588–2595.Google Scholar
  13. Donggen, H., Shijun, L., Shuiqing, Q., Lei, L., Zongjian, H., Jinbao, W., et al. (2008). Synthesis and characterization of visible light responsive N-Titania mixed crystal by a modified hydrothermal process. Journal of Non-Crystalline Solids, 354(33), 3965–3972.CrossRefGoogle Scholar
  14. Eiji, H., Shinobu, F., Keita, K., & Hiroaki, I. (2004). Growth of submicrometer-scale rectangular parallelepiped rutile Titania films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of American Chemical Society, 126(25), 7790–7791.CrossRefGoogle Scholar
  15. Fan, D., Sen, G., Haiqiang, W., Xiaofang, L., & Zhongbiao, W. (2011). Enhancement of the visible light photocatalytic activity of C-doped Titania nanomaterials prepared by a green synthetic approach. Journal of Physics Chemistry C, 115(27), 13285–13292.CrossRefGoogle Scholar
  16. Fan, D., Wu, D., Cui, J., Wei, Q., & Du, B. (2015). An ultrasensitive label-free immunosensor based on CdS sensitized Fe-Titania with high visible-light photoelectrochemical activity. Biosensors & Bioelectronics, 74, 843–848.CrossRefGoogle Scholar
  17. Fritz, J. K., Candy, C. M., & Jeanne, L. M. (2008). Trap-state distributions and carrier transport in pure and mixed-phase Titania: Influence of contacting solvent and interphasial electron transfer. Journal Physics Chemistry C, 112(33), 12786–12794.CrossRefGoogle Scholar
  18. Giammar, Daniel E., Maus, Carolyn J., & Liyun, X. (2007). Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environmental Engineering Science, 24(1), 85–95.CrossRefGoogle Scholar
  19. Gongming, W., Hanyu, W., Yichuan, L., Yuechao, T., Xunyu, Y., Robert, C. F., et al. (2011). Hydrogen-treated Titania nanowire arrays for photoelectrochemical water splitting. Nano Letter, 11(7), 3026–3033.CrossRefGoogle Scholar
  20. Han, T., Zhou, D., Wang, H., & Zheng, X. (2015). The study on preparation and photocatalytic activities of Cu2O/Titania nanoparticles. Journal of Environmental Chemical Engineering, 3(4), 2453–2462.CrossRefGoogle Scholar
  21. Hao, Bin W., Huey, H. H., Wen, Xiong, & David, l. (2012). Direct synthesis of anatase Titania nanowires with enhanced photocatalytic activity. Advanced Materials, 24(19), 2567–2571.CrossRefGoogle Scholar
  22. He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized Titania photocatalysis under simulated solar irradiation. Applied Catalysis, B: Environmental, 182, 132–141.CrossRefGoogle Scholar
  23. Hiroshi, I., Yuka, W., & Kazuhito, H. (2003). Nitrogen-concentration dependence on photocatalytic activity of Titania-xNx powders. Journal of Physics Chemistry B, 107(23), 5483–5486.CrossRefGoogle Scholar
  24. Hua Gui, Y., Gang, L., Shi, Z. Q., Cheng, H. S., Yong, Gang J., Sean, C. S., et al. (2009). Solvothermal synthesis and photoreactivity of anatase Titania nanosheets with dominant 001 facets. Journal of American Chemical Society, 131(11), 4078–4083.CrossRefGoogle Scholar
  25. Hua, X., & Lizhi, Z. (2009). Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase Titania nanocrystals with tunable brookite/rutile ratios. Journal of Physics Chemistry C, 113(5), 1785–1790.CrossRefGoogle Scholar
  26. Iman Amir, M. N., Julkapli, N. M., Bagheri, S., & Yousefi, A. T. (2015). Titania hybrid photocatalytic systems: Impact of adsorption and photocatalytic performance. Reviews in Inorganic Chemistry, 35(3), 151–178.CrossRefGoogle Scholar
  27. Jenny, S., Masaya, M., Masato, T., Jinlong, Z., Yu, H., Masakazu, A., et al. (2014). Understanding Titania photocatalysis: Mechanisms and materials. Chemical Reviews, 114(19), 9919–9986.CrossRefGoogle Scholar
  28. Jiaguo, Y., Wenguang, W., Bei, C., & Bao-Lian, S. (2009). Enhancement of photocatalytic activity of mesporous Titania powders by hydrothermal surface fluorination treatment. Journal of Physics Chemistry C, 113(16), 6743–6750.CrossRefGoogle Scholar
  29. Jimmy, C. Y., Jiaguo, Y., Wingkei, H., & Lizhi, Z. (2001). Preparation of highly photocatalytic active nano-sized Titania particles via ultrasonic irradiation. Chemistry Communication, 1942–1943.Google Scholar
  30. Jimmy, C. Y., Jiaguo, W., & Zitao, L. L. (2002). Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline Titania powders. Chemical Materials, 14(9), 3808–3816.CrossRefGoogle Scholar
  31. Jing, Z., Meijun, L., Zhaochi, F., Jun, C., & Can L. (2006). UV raman spectroscopic study on Titania. I. Phase transformation at the surface and in the bulk. Physic Chemistry B, 110(2), 927–935Google Scholar
  32. Kacem, M., Bru-Adan, V., Goetz, V., Sacco, D., & Wery, N. (2016). Inactivation of Escherichia coli by Titania-mediated photocatalysis evaluated by a culture method and viability-qPCR. Journal of Photochemistry and Photobiology A: Chemistry, 317, 81–87.CrossRefGoogle Scholar
  33. Li, X. Z., & Li, F. B. (2001). Study of Au/Au3+-Titania photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science Technology, 35(11), 2381–2387.CrossRefGoogle Scholar
  34. Li, Y., Qin, Z., Guo, H., Ji, S., & Zeng, T. (2014). Low-temperature synthesis of anatase Titania nanoparticles with tunable surface charges for enhancing photocatalytic activity. PLoS ONE, 9(12), e114638.CrossRefGoogle Scholar
  35. Li, Z., Xiufang, C., Xinchen, W., Yuanjian, Z., Wei, W., Yuhan, S., et al. (2010). One-step solvothermal synthesis of a carbon@ Titania dyade structure effectively promoting visible-light photocatalysis. Advanced Materials, 22(30), 3317–3321.CrossRefGoogle Scholar
  36. Liu, L., Dao, T. D., Kodiyath, R., Nagao, T., & Ye, J. (2014). Plasmonic janus-composite photocatalyst comprising Gold and C-Titania for enhanced aerobic oxidation over a broad visible-light range. Advanced Functional Materials, 24(48), 7754–7762.CrossRefGoogle Scholar
  37. Lun, H. G., Jani, M. H., Yue-Lin, Y., & Wang-Chi, V. (2013). Nanowire assemblies of carbon containing mixed phase Titania and their visible light photocatalytic activities. Science of Advanced Materials, 5(10), 1444–1448.CrossRefGoogle Scholar
  38. Martin, A., Lars, Ö., Sten, L., & Anders, P. (2002). Preparation of nanosize anatase and rutile Titania by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. Journal of Physics Chemistry B, 106(41), 10674–10679.CrossRefGoogle Scholar
  39. Mohamed, M. A., Salleh, W. N. W., Jaafar, J., & Ismail, A. F. (2015). Structural characterization of N-doped anatase–rutile mixed phase Titania nanorods assembled microspheres synthesized by simple sol–gel method. Journal of Sol-Gel Science and Technology, 74(2), 513–520.CrossRefGoogle Scholar
  40. Muhd Julkapli, N., Bagheri, S., Bee Abd Hamid, S. (2014). Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Scientific World Journal, 692307Google Scholar
  41. Ning, L., Hongwen, J., Zhanguo, M., & Liyuan, Y. (2014). Synthesis of nanoscale high purity rutile Titania by a rapid gas-phase chemical reaction. Materials Letter, 137, 164–166.CrossRefGoogle Scholar
  42. Ping, W., Lei, H., Chengzhou, Z., Yueming, Z., & Shaojun, D. (2011). Aqueous-phase synthesis of Ag-Titania-reduced graphene oxide and Pt-Titania-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano research, 4(11), 1153–1162.CrossRefGoogle Scholar
  43. Qiyun, Q., Hongwei, G., Ruixiang, P., Qi, C., Xiaohong, G., Fanqing, L., et al. (2010). Chemically binding carboxylic acids onto Titania nanoparticles with adjustable coverage by solvothermal strategy. Langmuir, 26(12), 9539–9546.CrossRefGoogle Scholar
  44. Quanjun, X., Jiaguo, Y., Bei, C., & Ong, H. C. (2010). Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-Titania nanocomposite hollow spheres, Chemistry—An Asian Journal, 5(6), 1466–1474.Google Scholar
  45. Sanjaya, D. P., Ruperto, G. M., Khiem, V., Nijem, N., Oliver, S., Yves, C., et al. (2012). Hydrothermal synthesis of graphene-Titania nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2(6), 949–956.CrossRefGoogle Scholar
  46. Sanly, L., May, L., Rolando, F., Christopher, C., Mary, D., & Rose, A. (2008). Titania photocatalysis of natural organic matter in surface water: Impact on trihalomethane and haloacetic acid formation potential. Environmental Science Technology, 42(16), 6218–6223.CrossRefGoogle Scholar
  47. Shi, L., Cao, L., Gao, R., Zhao, Y., Zhang, H., & Xia, C. (2014). Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis. Journal of Alloys and Compounds, 617, 756–762.CrossRefGoogle Scholar
  48. Sui, Y., Su, C., Yang, X., Hu, J., & Lin, X. (2015). Ag-AgBr nanoparticles loaded on Titania nanofibers as an efficient heterostructured photocatalyst driven by visible light. Journal of Molecular Catalysis A: Chemical, 410, 226–234.CrossRefGoogle Scholar
  49. Sun, B. L., Xu, L., & Zhou, G. W. (2014). Cetyltrimethylammonium bromide-assisted hydrothermal synthesis of mixed-phase titania nanorod and its photocatalytic activity. Advanced Materials Research, 918, 12–16.CrossRefGoogle Scholar
  50. Thomas, H. M., Abhaya, K. D., & Melissa, F. (1997). Oxidation of metal−EDTA complexes by Titania photocatalysis. Environmental Science Technology, 31(12), 3475–3481.CrossRefGoogle Scholar
  51. Tian, J., Leng, Y., Cui, H., & Liu, H. (2015). Hydrogenated Titania nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. Journal of Hazardous Materials, 299, 165–173.CrossRefGoogle Scholar
  52. Tias, P., Penney, L. M., & Timothy, J. S. (2007). Visible-light-mediated Titania photocatalysis of fluoroquinolone antibacterial agents. Environmental Science Technology, 41(13), 4720–4727.CrossRefGoogle Scholar
  53. Tieping, C., Yuejun, L., Changhua, W., Changlu, S., & Yichun, L. (2011). A facile in situ hydrothermal method to SrTiO3/Titania nanofiber heterostructures with high photocatalytic activity. Langmuir, 27(6), 2946–2952.CrossRefGoogle Scholar
  54. Toshiya, W., Shigemichi, F., Masahiro, M., Akira, F., & Kazuhito, H. (2000). Photocatalytic activity and photo-induced wettability conversion of Titania thin film prepared by sol-gel process on a soda-lime glass. Journal of Sol-Gel Science and Technology, 19(1), 71–76.Google Scholar
  55. Vinodkumar, E., Georg, M., Michael, K. S., Steven, J. H., & Suresh, C. P. (2013). A highly efficient Titania–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Applied Materials Interfaces, 5(5), 1663–1672.CrossRefGoogle Scholar
  56. Wang, Q., Jiang, H., Ding, S., Shi, J., & Jeong, J. H. (2016a). Butterfly-like BiVO4: Synthesis and visible light photocatalytic activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(4), 483–488.CrossRefGoogle Scholar
  57. Wang, W. K., Chen, J. J., Zhang, X., Huang, Y. X., Li, W. W., & Yu, H. Q. (2016b). Self-induced synthesis of phase-junction Titania with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 6Google Scholar
  58. Xiang, Z., Velmurugan, T., Mhaisalkar, S. G., & Seeram, R. (2012). Novel hollow mesoporous 1D Titania nanofibers as photovoltaic and photocatalytic materials. Nanoscale, 4, 1707–1716.CrossRefGoogle Scholar
  59. Xiao, J., Xie, Y., Han, Q., Nawaz, F., & Duan, F. (2016). Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag+/Titania: Influence of electron donating and withdrawing substituents. Journal of Hazardous Materials, 304, 126–133.CrossRefGoogle Scholar
  60. Yangming, L., Danzhen, L., Junhua, H., Guangcan, X., Jinxiu, W., Wenjuan, L., et al. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified Titania composite. Journal of Physical Chemistry C, 116(9), 5764–5772.CrossRefGoogle Scholar
  61. Yao, S.-H., Zheng, Z.-H., Chen, S., & Shi, Z.-L. (2014). Preparation, characterization, photocatalytic activity of s and ag co-doped mesoporous titania photocatalysts. Chinese Journal of Chemical Physics, 27(6), 732–738.CrossRefGoogle Scholar
  62. Yi, J., Yuan, X., Wang, H., Yu, H., & Peng, F. (2015). Preparation of Bi2Ti2O7/Titania nanocomposites and their photocatalytic performance under visible light irradiation. Material and Design, 86, 152–155.CrossRefGoogle Scholar
  63. Yoshihisa, O., Isao, A., Chisa, N., Tetsu, T., Tsuyoshi, Y., Tetsuto, N., et al. (2001). Degradation of bisphenol A in water by Titania photocatalyst. Environmental Science Technology, 35(11), 2365–2368.CrossRefGoogle Scholar
  64. Yoshio, N., Mitsuo, K., & Junichi, N. (1998). Factors governing the initial process of Titania photocatalysis studied by means of in-situ electron spin resonance measurements. Journal of Physics Chemistry B, 102(50), 10279–10283.CrossRefGoogle Scholar
  65. Yu, H., Zhihui, A., Wingkei, H., Meijuan, C., & Shuncheng, L. (2010). Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO. Journal of Physic Chemistry C, 114(14), 6342–6349.CrossRefGoogle Scholar
  66. Yuyuan, Z., Jinzhu, C., & Xinjun, L. (2010). Preparation and photocatalytic performance of anatase/rutile mixed-phase Titania nanotubes. Catalysis Letter, 139(3), 129–133.Google Scholar
  67. Zhang, J., Li, L., Liu, D., Hao, Y., & Zhang, W. (2015). Multi-layer and open three-dimensionally ordered macroporous Titania-ZrO2 composite: Diversified design and the comparison of multiple mode photocatalytic performance. Materials and Design, 86, 818–828.CrossRefGoogle Scholar
  68. Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite Titania. Physical Chemistry Chemical Physics: PCCP, 16(38), 20382–20386.CrossRefGoogle Scholar
  69. Zuoli, H., Wenxiu, Q., Jing, C., Xingtian, Y., Yucheng, H., & Jiangbo, R. (2012). Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped Titania nanobelts prepared by solvothermal synthesis. ACS Applied Materials Interfaces, 4(12), 6816–6826.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Bagheri
    • 1
  • Nurhidayatullaili Muhd Julkapli
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations