Easy Separation of Magnetic Photocatalyst from Aqueous Pollutants

Part of the Green Energy and Technology book series (GREEN)


One of the main public concerns is the aquatic habitat and its corresponding issues due to incessant contamination of the ecological water systems. In recent years, the research attention has been focused on processes that lead to an improved oxidative degradation of organic pollutants. Therefore, semiconductor photocatalysis technology has aroused scientists’ interest in environmental remediation. Although several semiconductors have proven to be ideal candidates for the treatment of water pollution, the efficient separation and recycling of this fine-powdered photocatalyst is still a scientific problem when applied in practice, including separation process, selectivity, and dispersion. A photocatalyst with magnetic properties allows the use of the technique of magnetic separation which is one of the most effective and simple methods for removing suspended solids from wastewater without the need for further separation processes. The magnetic photocatalyst allows its use as a suspended material, providing the advantage to have a high surface area for reaction. This chapter highlights the advantages and disadvantages of current photocatalyst systems; moreover, it is focused on composites magnetic photocatalysts, including metals and nonmetals, metal oxides, carbon based, and ceramics.


  1. Alan, K.-S., Yong-Sheng, H., Arnold, J. F., Galen, D. S., & Eric, W. M. (2008). Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for Photocatalytic water splitting. Journal of Physical Chemistry C, 2112(40), 15900–15907.Google Scholar
  2. Baifu, X., Liqiang, J., Zhiyu, R., Baiqi, W., & Honggang, F. (2005). Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of Titania. Journal of Physical Chemistry B, 109(7), 2805–2809.CrossRefGoogle Scholar
  3. Beydoun, D., Amal, R., Scott, J., Low, G., & McEvoy, S. (2001). Studies on the mineralization and separation efficiencies of a magnetic photocatalyst. Chemical Engineering and Technology, 24(7), 745–748.CrossRefGoogle Scholar
  4. Bian, X., Hong, K., Ge, X., Song, R., Liu, L., & Xu, M. (2015). Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. Journal of Physical Chemistry C, 119(4), 1700–1705.CrossRefGoogle Scholar
  5. Da, C., Hao, Z., Song, H., & Jinghong, L. (2008). Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO − Titania nanocomposites. Journal of Physical Chemistry C, 112(1), 117–122.Google Scholar
  6. Dahubaiyil, Wang, X., & Li, X. (2014). Preparation and photocatalytic efficiency of Fe3O4/Titania nanocomposite fibers modified with Ag nanoparticle. Chemical Journal of Chinese Universities, 35(2), 357–361.Google Scholar
  7. Elena, K., Olya, S., Nevena, M., & Iliya, R. (2014). Poly(3-hydroxybutyrate)-based composites materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. Journal of Materials Science, 49(5), 2144–2153.CrossRefGoogle Scholar
  8. Gad-Allah, T. A., Kato, S., Satokawa, S., & Kojima, T. (2009). Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (Titania/SiO2/Fe3O4): Parametric and kinetic studied. Desalination, 244(1), 1–11.CrossRefGoogle Scholar
  9. Guo, J., Jiang, B., Zhang, X., Zhou, X., & Hou, W. (2013). Fe2.25W0.75O4/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property. Journal of Solid State Chemistry, 205, 171–176.CrossRefGoogle Scholar
  10. Guopeng, W., Tao, C., Weiguang, S., Guohua, Z., Xu, Z., Zhibin, L., et al. (2008). H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/Titania catalyst. International Journal of Hydrogen Energy, 33(4), 1243–1251.CrossRefGoogle Scholar
  11. Haitao, L., Xiaodie, H., Zhenhui, K., Hui, H., Yang, L., Jinglin, L., et al. (2010). Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition, 49(26), 4430–4434.CrossRefGoogle Scholar
  12. Haolan, X., Wenzhong, W., & Wei, Z. (2006). Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. Journal of Physical Chemistry B, 110(28), 13829–13834. (2006).CrossRefGoogle Scholar
  13. Hassan, M. E.-D., & Carl, A. L. (2011). Nanoparticles dispersion in processing functionalised PP/Titania nanocomposites: distribution and properties. Journal of Nanoparticle Research, 13(3), 1115–1124.CrossRefGoogle Scholar
  14. Huang, X., Wang, G., Yang, M., Guo, W., & Gao, H. (2011). Synthesis of polyaniline-modified Fe3O4/SiO2/Titania composite microspheres and their photocatalytic application. Materials Letters, 65(19), 2887–2890.CrossRefGoogle Scholar
  15. Iharaa, T., Miyoshia, M., Iriyamab, Y., Matsumotoc, O., & Sugihara, S. (2003). Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis, B: Environmental, 42(4), 403–409.CrossRefGoogle Scholar
  16. Janusa, M., Trybaa, B., Inagakib, M., & Morawskia, A. W. (2004). New preparation of a carbon-Titania photocatalyst by carbonization of n-hexane deposited on Titania. Applied Catalysis, B: Environmental, 52(1), 61–67.CrossRefGoogle Scholar
  17. Jian, X., Lei, L., Changsheng, G., Yuan, Z., & Shanfeng, W. (2013). Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chemical Engineering Journal, 221, 230–237.CrossRefGoogle Scholar
  18. Jing, C., Benyan, X., Bangde, L., Haili, L., & Shifu, C. (2011). Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catalysis Communications, 13(1), 63–68.CrossRefGoogle Scholar
  19. Jing, M-X., Han, C., Wang, Z., & Shen, X-Q. (2013). Magnetic core–shell nano-Titania/Al2O3/NiFe2O4 microparticles with enhanced photocatalytic activity. Journal of Nanoscience and Nanotechnology, 13(7), 4949–4953(5).Google Scholar
  20. Jun, Z., Fengjun, S., Jing, L., Dongfeng, Ch., Jianming, G., Zhixin, H., et al. (2008). Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chemistry Materials, 20(9), 2937–2941.CrossRefGoogle Scholar
  21. Larumbe, S., Monge, M., & Gómez-Polo, C. (2014). Magnetically separable photocatalyst Fe3O4/SiO2/N-Titania composites nanostructure. IEEE Transactions on Magnetics, 50(11), 6971675.CrossRefGoogle Scholar
  22. Lee, H. U., Lee, G., Park, J. C., Lee, Y.-C., Lee, S. M., Son, B., et al. (2014). Efficient visible-light responsive Titania nanoparticles incorporated magnetic carbon photocatalysts. Chemical Engineering Journal, 240, 91–98.CrossRefGoogle Scholar
  23. Lei, J., Gangqiang, Z., Mirabbos, H., Xiancong, L., Congwei, T., Jianhong, P., et al. (2014). A Plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Industrial and Engineering Chemical Research, 53(35), 13718–13727.CrossRefGoogle Scholar
  24. Li, X., Zhao, Q., & Quan, X. (2010). New photocatalyst electrodes and their photocatalytic degradation properties of organics. Current Organic Chemistry, 14(7), 709–727.CrossRefGoogle Scholar
  25. Liang, Y., He, X., Chen, L., & Zhang, Y. (2014). Preparation and characterization of Titania-Graphene@Fe3O4 magnetic composite and its application in the removal of trace amounts of microcystin-L. RSC Advances, 4(100), 56883–56891.CrossRefGoogle Scholar
  26. Lianzhou, W., Fengqiu, T., Kiyoshi, O., GQ & (Max) L. (2009). Layer-by-layer assembled thin films of inorganic nanomaterials: fabrication and photo-electrochemical properties. International Journal of Surface Science and Engineering, 3(1), 44–63.Google Scholar
  27. Ling, Z., Wenzhong, W., Lin, Z., Meng, S., & Songmei, S. (2009). Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Applied Catalysis, B: Environmental, 90(3), 458–462.Google Scholar
  28. Liu, H., Jia, Z., Ji, S., Zheng, Y., Li, M., & Yang, H. (2011). Synthesis of Titania/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catalysis Today, 175(1), 293–298.CrossRefGoogle Scholar
  29. Liu, X., Xing, J., Qiu, J. & Sun, X. (2013). Preparation and characterization of visible light-driven praseodymium-doped mesoporous Titania coated magnetite photocatalyst. Indian Journal of Chemistry, 52(A), 1257–1262.Google Scholar
  30. Ma, P., Jiang, W., Wang, F., Li, F., Shen, P., Chen, M., et al. (2013). Synthesis and photocatalytic property of Fe3O4@Titania core/shell nanoparticles supported by reduced graphene oxide sheets. Journal of Alloys and Compounds, 578, 501–506.CrossRefGoogle Scholar
  31. Maria, K. N., & Janusz, N. (2010). An overview of semi-conductor photocatalysis: Modification of Titania nanomaterials. Solid State Phenomena, 162, 239–260.CrossRefGoogle Scholar
  32. Meng, S., Wenzhong, W., & Ling, Z. (2009). Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. Journal of Hazardous Materials, 167(1), 803–809.Google Scholar
  33. Mukesh, A., Smrati, G., Andrij, P., Nikolaos, E. Z., & Manfred, S. (2009). Chemistry Materials, 21(21), 5343–5348.CrossRefGoogle Scholar
  34. Nikazara, M., Gholivand, K., & Mahanpoor, K. (2007). Using Titania supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinetics and Catalysis, 48(2), 214–220.CrossRefGoogle Scholar
  35. Okuno, T., Kawamura, G., Muto, H. & Matsuda, A. (2015). Three modes of high-efficient photocatalysis using composites of Titania-nanocrystallite-containing mesoporous SiO2 and Goldnanoparticles. Journal of Sol–Gel Science and Technology, (In Press).Google Scholar
  36. Rajesh, C., & Sukumaran, V. (2013). Cyclodextrin-functionalized Fe3O4@Titania: Reusable magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano, 7(5), 4093–4104.CrossRefGoogle Scholar
  37. Sato, J., Kobayashi, H., Ikarashi, K., Saito, N., Nishiyama, H., & Inoue, Y. (2004). Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. Journal of Physic Chemistry B, 108(14), 4369–4375.CrossRefGoogle Scholar
  38. Shi-Kuo, L., Fang-Zhi, H., Yang, W., Yu-Hua, S., Ling-Guang, Q., An-Jian, X., et al. (2011). Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. Journal of Materials Chemistry, 21, 7459–7466.CrossRefGoogle Scholar
  39. Su, J., Zhang, Y., Xu, S., Wang, S., Ding, H., Pan, S., et al. (2014). Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@Titania photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ion. Nanoscale, 6(10), 5181–5192.CrossRefGoogle Scholar
  40. Tryba, B. (2007). Effect of Titania precursor on the photoactivity of Fe–C–TiO2 photocatalysts for acid red (AR) decomposition. Journal of Advanced Oxidation Technologies, 10(2), 267–272.CrossRefGoogle Scholar
  41. Victoria, N. L., Mathilde, P., Konstantinos, M., Augustin, C., Didier, H., Myrto, V., et al. (2015). A multi-scale health impact assessment of air pollution over the 21st century. Science of the Total Environment, 514, 439–449.CrossRefGoogle Scholar
  42. Wei, Q., Ying, Z., & Katy, A. H. (2007). Study on a novel POM-based magnetic photocatalyst: Photocatalytic degradation and magnetic separation. Chemical Engineering Journal, 125(3), 165–176.CrossRefGoogle Scholar
  43. Wei, W., Changzhong, J., & Vellaisamy, A. L. R. (2015). Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale, 7, 38–58.CrossRefGoogle Scholar
  44. Widi, R. K., & Budhyantoro, A. (2014). Catalytic performance of Titania-Fe3O4 supported bentonite for photocatalytic degradation of phenol. International Journal of Applied Engineering Research, 9(23), 18753–18758.Google Scholar
  45. Wing Sze, T., & Walid, A. D. (2009). New approach toward nanosized ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts. ACS Applied Materials & Interfaces, 1(11), 2453–2461.CrossRefGoogle Scholar
  46. Wu, S.-H., Wu, J.-L., Jia, S.-Y., Chang, Q.-W., Ren, H.-T., & Liu, Y. (2013). Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@Titania hierarchical nanostructures: Fabrication and enhanced photocatalytic properties. Applied Surface Science, 287, 389–396.CrossRefGoogle Scholar
  47. Xi, G., Yue, B., Cao, J., & Ye, J. (2011). Fe3O4/WO3 hierarchical core-shell structure: High-performance and recyclable visible-light photocatalysis. Chemistry - A European Journal, 17(18), 5145–5154.CrossRefGoogle Scholar
  48. Xiong, T., Dong, F., Zhou, Y., Fu, M., & Ho, W.-K. (2015). New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation. Journal of Colloid and Interface Science, 447, 16–24.CrossRefGoogle Scholar
  49. Xu, M., Li, Q., & Fan, H. (2014). Monodisperse nanostructured Fe3O4/ZnO microrods using for waste water treatment. Advanced Powder Technology, 25(6), 1715–1720.CrossRefGoogle Scholar
  50. Xu, X., Ji, F., Fan, Z., & He, L. (2011). Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/Titania under solar light. International Journal of Environmental Research and Public Health, 8(4), 1258–1270.CrossRefGoogle Scholar
  51. Yang, T., & Tetsu, T. (2005). Mechanisms and applications of plasmon-induced charge separation at Titania films loaded with gold nanoparticles. Journal of American Chemical Society, 127(20), 7632–7637.CrossRefGoogle Scholar
  52. Yang, W., Shikuo, L., Xianran, X., Fangzhi, H., Yuhua, S., Anjian, X., et al. (2011). Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. Chemistry - A European Journal, 17(17), 4802–4808.CrossRefGoogle Scholar
  53. Ye, F., Ohmori, A., & Li, C. (2004). New approach to enhance the photocatalytic activity of plasma sprayed Titania coatings using p-n junctions. Surface & Coatings Technology, 184(2), 233–238.CrossRefGoogle Scholar
  54. Ying, Z., Bin, D., Tierui, Z., Daming, G., & An-Wu, X. (2010). Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. Journal of Physical Chemistry C, 114(11), 5073–5079.CrossRefGoogle Scholar
  55. Yong, J. K., Bifen, G., Song, Y. H., Myung, H. J., Ashok, K. C., Taegyung, K., et al. (2009). Heterojunction of FeTiO3 nanodisc and Titania nanoparticle for a novel visible light photocatalyst. Journal of Physic Chemistry C, 113(44), 19179–19184.CrossRefGoogle Scholar
  56. Yongrui, P., Zheng, Z., Bao, M., Li, Y., Zhou, Y., & Sang, G. (2015). Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological process. Chemical Engineering Journal, 273, 1–6.CrossRefGoogle Scholar
  57. Youji, L., Shuguo, S., Mingyuan, M., Yuzhu, O., & Wenbin, Y. (2008). Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a Titania-coated activated carbon catalyst: Effects of initial RhB content, light intensity and Titania content in the catalyst. Chemical Engineering Journal, 142(2), 147–155.CrossRefGoogle Scholar
  58. Yue, L., Zhigang, G., Hongbing, C., Lu, M., Jia, C., Jie, Z., et al. (2012). Ternary graphene–Titania–Fe3O nanocomposite as a recollectable photocatalyst with enhanced durability. European Journal of Inorganic Chemistry, 28, 4439–4444.Google Scholar
  59. Yuxiang, L., Mei, Z., Min, G., & Xidong, W. (2009). Preparation and properties of a nano Titania/Fe3O4 composite superparamagnetic photocatalyst. Rare Metals, 28(5), 423–427.CrossRefGoogle Scholar
  60. Zhang, C., Chen, H., Ma, M., & Yang, Z. (2015). Facile synthesis of magnetically recoverable Fe3O4/Al2O3/molecularly imprinted Titania nanocomposites and its molecular recognitive photocatalytic degradation of target contaminant. Journal of Molecular Catalysis A: Chemical, 402, 10–16.CrossRefGoogle Scholar
  61. Zhang, J., Zhang, L., Zhou, S., Chen, H., Zhong H., Zhao, Y., et al. (2014a). Magnetically separable attapulgite-Titania-FexOy composites with superior activity towards photodegradation of methyl orange under visible light radiation. Journal of Industrial and Engineering Chemistry, 20(5), 3884–3889.Google Scholar
  62. Zhang, Y.-F., Qiu, L.-G., Yuan, Y.-P., Zhu, Y.-J., Jiang, X. & Xiao, J.-D. (2014b). Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Applied Catalysis B: Environmental, 144, 863–869.Google Scholar
  63. Zhao, J., Li, H., & Huang, L. (2009). Preparation and characterization of magnetic nanosized Titania/Al2O3/ Fe3O4 photocatalyst. Journal of Xi’an Jiaotong University, 43(3), 78–81.Google Scholar
  64. Zhifu, L., Zhi-Gang, Z., & Masahiro, M. (2009). Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: Effect of interfacial modification. Journal of Physical Chemistry C, 113(39), 17132–17137.CrossRefGoogle Scholar
  65. Zhongliang, S., Xiaoyan, Z., & Shuhua, Y. (2011). Synthesis and photocatalytic properties of lanthanum doped anatase Titania coated Fe3O4 composites. Rare Metal, 30(3), 252–257.CrossRefGoogle Scholar
  66. Zhou, H., Zhang, C., Wang, X., Li, H., & Du, Z. (2011). Fabrication of Titania-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity. Synthetic Metals, 161(21), 2199–2205.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Bagheri
    • 1
  • Nurhidayatullaili Muhd Julkapli
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations