Applications of Titania as a Heterogeneous Catalyst for Degradation of Landfill Leachates

Part of the Green Energy and Technology book series (GREEN)


It is generally needed for globally practiced and cost-effective disposal of municipal solid waste technique. Thus, this chapter focused on applications, modification, and recent development of photocatalysis for municipal solid waste landfill leachate treatment under solar light irradiation. Landfill leachate is generated when municipal solid waste is disposed of essentially because of the percolation of rainwater through the waste decomposition and landfill layers. The direct use of solar radiation is highly attractive for landfill treatments for better cost reduction, synergistic effect, economic aspects reduction of toxicity, decomposition of various pollutants, energy consumption, and environmental concerns. As concerned with photocatalytic technique, several key parameters play an important role to optimize the photocatalytic activities including O2, pH, and biological and chemical oxygen demand ratios. In addition, developing of modified photocatalysis via physical and structural modification methods could considerably simulate the synergistic effects, adsorb natural sunlight, increased oxidation, and benefits on better photodegradation of landfill pollutants. Positive and negative aspects subjected toward the photocatalysis treatment of landfill leachate treatment have been discussed and highlighted coupled with future research trends and outlooks.


  1. Alfano, O. M., Bahnemann, D., Cassano, A. E., Dillert, R., & Goslich, R. (2000). Photocatalysis in water environments using artificial and solar light. Catalysis Today, 58(2), 199–230.CrossRefGoogle Scholar
  2. Amor, C., De Torres-Socías, E., Peres, J. A., Maldonado, M. I., Oller, I., Malato, S., et al. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 286, 261–268.CrossRefGoogle Scholar
  3. Balkaya, N. (1999). A study of optimal experimental conditions in the photocatalytic degradation of an organophosphorous insecticide. Environmental Technology, 20(6), 617–623.CrossRefGoogle Scholar
  4. Bekbölet, M., Lindner, M., Weichgrebe, D., & Bahnemann, D. W. (1996). Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 56(5), 455–469.CrossRefGoogle Scholar
  5. Cai, F. F., Yang, Z. H., Huang, J., Zeng, G. M., Wang, L. K., & Yang, J. (2014). Application of cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalysis technology for pretreatment of aging leachate. Journal of Hazardous Materials, 275, 63–71.CrossRefGoogle Scholar
  6. Chang, C. F., & Man, C. Y. (2011). Titania-coated magnetic composites as photocatalysts for phthalate photodegradation. Industrial and Engineering Chemistry Research, 50(20), 11620–11627.CrossRefGoogle Scholar
  7. Chemlal, R., Abdi, N., Drouiche, N., Lounici, H., Pauss, A., & Mameri, N. (2013). Rehabilitation of Oued Smar landfill into a recreation park: Treatment of the contaminated waters. Ecological Engineering, 51, 244–248.CrossRefGoogle Scholar
  8. Chen, D., Sivakumar, M., & Ray, A. K. (2000). Heterogeneous photocatalysis in environmental remediation. Developments in Chemical Engineering and Mineral Processing, 8(5–6), 505–550.Google Scholar
  9. Cheng, X. T. Z. Y. H., & Shaomin, Z. C. L. (2009). Preparation of supported mixed-crystal titanium dioxide photocatalyst at low temperature and its photocatalytic activity. Chinese Journal of Environmental Engineering, 10, 037.Google Scholar
  10. Cho, S. P., Hong, S. C., & Hong, S. I. (2004). Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 98(3), 245–253.CrossRefGoogle Scholar
  11. Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2010). Ozonation as polishing treatment of mature landfill leachate. Journal of Hazardous Materials, 182(1), 730–734.CrossRefGoogle Scholar
  12. Dai, S. S., Liu, J. G., Song, W. C., & Wang, L. L. (2007). Application of advanced treatment for refractory organic wastewater with ozone oxidization method. Water Sciences and Engineering Technology, 2, 24–25.Google Scholar
  13. De Morais, J. L., & Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. Journal of Hazardous Materials, 123(1), 181–186.CrossRefGoogle Scholar
  14. De Torres-Socías, E., Prieto-Rodríguez, L., Zapata, A., Fernández-Calderero, I., Oller, I., & Malato, S. (2015). Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment. Chemical Engineering Journal, 261, 60–66.CrossRefGoogle Scholar
  15. Del Moro, G., Prieto-Rodríguez, L., De Sanctis, M., Di Iaconi, C., Malato, S., & Mascolo, G. (2016). Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter. Chemical Engineering Journal, 288, 87–98.CrossRefGoogle Scholar
  16. Dong, S., Zhang, X., He, F., Dong, S., Zhou, D., & Wang, B. (2015). Visible-light photocatalytic degradation of methyl orange over spherical activated carbon-supported and Er3+: YAlO3-doped Titania in a fluidized bed. Journal of Chemical Technology and Biotechnology, 90(5), 880–887.CrossRefGoogle Scholar
  17. Fan, X. F., & Liu, J. M. (2015). Graphene-supported CoPc/Titania synthesized by sol-gel–hydrothermal method with enhanced photocatalytic activity for degradation of the typical gas of landfill exhaust. Journal of the Air and Waste Management Association, 65(1), 50–58.MathSciNetCrossRefGoogle Scholar
  18. Ghani, Z. A., Yusoff, M. S., & Andas, J. (2015, October). Review on Applications of Nanoparticles in Landfill Leachate Treatment. In Applied mechanics and materials (Vol. 802, pp. 525–530). Trans Tech Publications.Google Scholar
  19. Ghodbane, H., Hamdaoui, O., Vandamme, J., Van Durme, J., Vanraes, P., Leys, C., & Nikiforov, A. Y. (2015). Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst Titania. Open Chemistry, 13(1).Google Scholar
  20. Ghosh, S., Kouamé, N. A., Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., et al. (2015). Conducting polymer nanostructures for photocatalysis under visible light. Nature Materials, 14(5), 505–511.CrossRefGoogle Scholar
  21. Gulyas, H., Bockelmann, D., Hemmerling, L., Bahnemann, D., & Sekoulov, I. (1994). Treatment of recalcitrant organic compounds in oil reclaiming wastewater by ozone/hydrogen peroxide and UV/titanium dioxide. Water Science and Technology, 29(9), 129–132.Google Scholar
  22. Hermosilla, D., Merayo, N., Ordóñez, R., & Blanco, Á. (2012). Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 32(6), 1236–1243.CrossRefGoogle Scholar
  23. Hilles, A. H., Amr, S. S. A., Hussein, R. A., El-Sebaie, O. D., & Arafa, A. I. (2016). Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management, 166, 493–498.CrossRefGoogle Scholar
  24. Hirakawa, T., Kominami, H., Ohtani, B., & Nosaka, Y. (2001). Mechanism of photocatalytic production of active oxygens on highly crystalline Titania particles by means of chemiluminescent probing and ESR spectroscopy. The Journal of Physical Chemistry B, 105(29), 6993–6999.CrossRefGoogle Scholar
  25. Hirakawa, T., & Nosaka, Y. (2002). Properties of O2-and OH formed in Titania aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir, 18(8), 3247–3254.CrossRefGoogle Scholar
  26. Hu, L., Zeng, G., Chen, G., Dong, H., Liu, Y., Wan, J., et al. (2016). Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Journal of Hazardous Materials, 301, 106–118.CrossRefGoogle Scholar
  27. Huang, H., Lin, J., Fan, L., Wang, X., Fu, X., & Long, J. (2015). Heteroatomic Ni, Sn clusters-grafted anatase Titania photocatalysts: Structure, electron delocalization, and synergy for solar hydrogen production. The Journal of Physical Chemistry C, 119(19), 10478–10492.CrossRefGoogle Scholar
  28. Huang, J., Nkrumah, P. N., Li, Y., & Appiah-Sefah, G. (2013). Chemical behavior of phthalates under abiotic conditions in landfills. In Reviews of environmental contamination and toxicology (Vol. 224, pp. 39–52). Springer New York.Google Scholar
  29. Kaneva, N., Stambolova, I., Blaskov, V., Eliyas, A., & Vassilev, S. (2013). Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/Titania/glass multilayers. Open Chemistry, 11(7), 1055–1065.CrossRefGoogle Scholar
  30. Karaca, G., Baskaya, H. S., & Tasdemir, Y. (2016). Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite. Environmental Science and Pollution Research, 23(1), 242–252.CrossRefGoogle Scholar
  31. Kumar, M. G., Ishii, S., Müller, T. S., Itoh, K., & Murabayashi, M. (1999). Treatment of textile dye wastewater using ozone combined with photocatalyst. Toxicological and Environmental Chemistry, 68(1–2), 221–231.CrossRefGoogle Scholar
  32. Lee, C. M., Palaniandy, P., Zaman, N. Q., & Adlan, M. N. (2015, October). Pharmaceutical removal from synthetic wastewater using heterogeneous-photocatalyst. In Applied mechanics and materials (Vol. 802, pp. 507–512). Trans Tech Publications.Google Scholar
  33. Li, S., Cao, X., Liu, L., & Ma, X. (2015). Degradation of thiamethoxam in water by the synergy effect between the plasma discharge and the Titania photocatalysis. Desalination and Water Treatment, 53(11), 3018–3025.CrossRefGoogle Scholar
  34. Liu, F., He, T., Cao, Q., Xu, Y., Liu, W., & Zhou, W. (2015a). Structure and property of nano-Titania doped with Ag+ membrane photocatalyst. Journal of Nanoscience and Nanotechnology, 15(4), 2726–2732.CrossRefGoogle Scholar
  35. Liu, G. Q., Chen, L., Wang, Y. P., & Peng, P. Y. (2015b). Photodegradation of 2-naphthalenesulfonate in aqueous catalyzed by N-doped Titania under irradiation of simulated solarlight. In Specialized collections (Vol. 2, pp. 1201–1205). Trans Tech Publications.Google Scholar
  36. Liu, T. X., Li, X. Z., & Li, F. B. (2010). Development of a photocatalytic wet scrubbing process for gaseous odor treatment. Industrial and Engineering Chemistry Research, 49(8), 3617–3622.CrossRefGoogle Scholar
  37. Liu, Z., Wu, W., Shi, P., Guo, J., & Cheng, J. (2015c). Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Management, 41, 111–118.CrossRefGoogle Scholar
  38. Merabet, S., Bouzaza, A., & Wolbert, D. (2009). Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process—Influence of some operating parameters. Journal of Hazardous Materials, 166(2), 1244–1249.CrossRefGoogle Scholar
  39. Miaomiao, P. L. J. M. W. (2008). Advanced treatment of landfill leachate by the combined use of photocatalysis and ozonation. Chinese Journal of Environmental Engineering, 5, 019.Google Scholar
  40. Moon, G. H., Kim, W., Bokare, A. D., Sung, N. E., & Choi, W. (2014). Solar production of H2O2 on reduced graphene oxide–Titania hybrid photocatalysts consisting of earth-abundant elements only. Energy & Environmental Science, 7(12), 4023–4028.CrossRefGoogle Scholar
  41. Moreira, F. C., Soler, J., Fonseca, A., Saraiva, I., Boaventura, R. A., Brillas, E., et al. (2015). Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate. Water Research, 81, 375–387.CrossRefGoogle Scholar
  42. Obata, K., Kishishita, K., Okemoto, A., Taniya, K., Ichihashi, Y., & Nishiyama, S. (2014). Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Applied Catalysis, B: Environmental, 160, 200–203.CrossRefGoogle Scholar
  43. Pichat, P. (2016). Fundamentals of Titania photocatalysis. Consequences for some environmental applications. In Heterogeneous photocatalysis (pp. 321–359). Springer, Berlin, Heidelberg.Google Scholar
  44. Piscopo, A., Robert, D., & Weber, J. V. (2001). Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in Titania aqueous solution. Applied Catalysis, B: Environmental, 35(2), 117–124.CrossRefGoogle Scholar
  45. Poblete, R., Otal, E., Vilches, L. F., Vale, J., & Fernández-Pereira, C. (2011). Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO2 and Fe. Applied Catalysis, B: Environmental, 102(1), 172–179.CrossRefGoogle Scholar
  46. Poblete, R., Prieto-Rodríguez, L., Oller, I., Maldonado, M. I., Malato, S., Otal, E., … & Fernández-Pereira, C. (2012). Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst. Chemosphere, 88(9), 1090–1096.Google Scholar
  47. Poznyak, T., Bautista, G. L., Chaírez, I., Córdova, R. I., & Ríos, L. E. (2008). Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment. Journal of Hazardous Materials, 152(3), 1108–1114.CrossRefGoogle Scholar
  48. Qiang, C. H. E. N. (2009). Progress in effect of inorganic ions on photocatalysis reaction by use of TiO2. Journal of Anhui Agricultural Sciences, 25, 129.Google Scholar
  49. Rashed, M. N. (2015). Photocatalytic degradation of divalent metals under sunlight irradiation using nanoparticle titania modified concrete materials (recycled glass cullet). In Recent progress in desalination, environmental and marine outfall systems (pp. 93–108). Springer International Publishing.Google Scholar
  50. Reddy, K. R., Hassan, M., & Gomes, V. G. (2015). Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis, A: General, 489, 1–16.CrossRefGoogle Scholar
  51. Rocha, E. M., Vilar, V. J., Fonseca, A., Saraiva, I., & Boaventura, R. A. (2011). Landfill leachate treatment by solar-driven AOPs. Solar Energy, 85(1), 46–56.CrossRefGoogle Scholar
  52. Sekine, K., Yamamoto, H., Kono, S., Ikeda, T., Kuroda, A., & Tanii, T. (2015). Surface modification of cell scaffold in aqueous solution using TiO2 photocatalysis and linker protein L2 for patterning primary neurons. e-Journal of Surface Science and Nanotechnology, 13, 213–218.CrossRefGoogle Scholar
  53. Sotelo-Vazquez, C., Noor, N., Kafizas, A., Quesada-Cabrera, R., Scanlon, D. O., Taylor, A., et al. (2015). Multifunctional P-doped Titania films: A new approach to self-cleaning, transparent conducting oxide materials. Chemistry of Materials, 27(9), 3234.CrossRefGoogle Scholar
  54. Srivastava, A. (2015). Photocatalytic application of titanium dioxide in architectural concrete: A review. International Journal of Scientific Research & Chemical Engineering, 1(1).Google Scholar
  55. Tauchert, E., Schneider, S., de Morais, J. L., & Peralta-Zamora, P. (2006). Photochemically-assisted electrochemical degradation of landfill leachate. Chemosphere, 64(9), 1458–1463.CrossRefGoogle Scholar
  56. Thiruvenkatachari, R., Ouk Kwon, T., & Shik Moon, I. (2005). Application of slurry type photocatalytic oxidation-submerged hollow fiber microfiltration hybrid system for the degradation of bisphenol A (BPA). Separation Science and Technology, 40(14), 2871–2888.CrossRefGoogle Scholar
  57. Trabelsi, H., Atheba, G. P., Hentati, O., Mariette, Y. D., Robert, D., Drogui, P., et al. (2016). Solar photocatalytic decolorization and degradation of methyl orange using supported Titania. Journal of Advanced Oxidation Technologies, 19(1), 79–84.CrossRefGoogle Scholar
  58. Venkatadri, R., & Peters, R. W. (1993). Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton’s reagent, and titanium dioxide-assisted photocatalysis. Hazardous Waste and Hazardous Materials, 10(2), 107–149.CrossRefGoogle Scholar
  59. Vilar, V. J., Capelo, S. M., Silva, T. F., & Boaventura, R. A. (2011a). Solar photo-Fenton as a pre-oxidation step for biological treatment of landfill leachate in a pilot plant with CPCs. Catalysis Today, 161(1), 228–234.CrossRefGoogle Scholar
  60. Vilar, V. J., Rocha, E. M., Mota, F. S., Fonseca, A., Saraiva, I., & Boaventura, R. A. (2011b). Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Research, 45(8), 2647–2658.CrossRefGoogle Scholar
  61. Wang, D., Duan, Y., Luo, Q., Li, X., An, J., Bao, L., et al. (2012). Novel preparation method for a new visible light photocatalyst: Mesoporous Titania supported Ag/AgBr. Journal of Materials Chemistry, 22(11), 4847–4854.CrossRefGoogle Scholar
  62. Wang, J., Ma, X. P., Tang, F. D., Yang, C. L., Li, Y., & Guo, B. (2011). Study on pretreatment of landfill leachate by microwave-assisted catalytic oxidation process. China Environmental Science, 31(7), 1166–1170.Google Scholar
  63. Wang, Z. P., Zhang, Z., Lin, Y. J., Deng, N. S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation–photooxidation process. Journal of Hazardous Materials, 95(1), 153–159.CrossRefGoogle Scholar
  64. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Malato, S., & Weber, J. V. (2004). Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Applied Catalysis, B: Environmental, 53(2), 127–137.CrossRefGoogle Scholar
  65. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V. (2006a). Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 4(1), 51–61.CrossRefGoogle Scholar
  66. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V. (2006b). Leachate detoxification by combination of biological and Titania-photocatalytic processes. Water Science and Technology, 53(3), 181–190.CrossRefGoogle Scholar
  67. Wu, T. T., Xie, Y. P., Yin, L. C., Liu, G., & Cheng, H. M. (2014). Switching photocatalytic H2 and O2 generation preferences of rutile Titania microspheres with dominant reactive facets by boron doping. The Journal of Physical Chemistry C, 119(1), 84–89.CrossRefGoogle Scholar
  68. Xiang, Q., Yu, J., & Jaroniec, M. (2012). Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of Titania nanoparticles. Journal of the American Chemical Society, 134(15), 6575–6578.CrossRefGoogle Scholar
  69. Xiaofeng, G., Minfei, J., Chunying, L., & Zhenhui, Z. (2003). Photocatalytic oxidation of landfill leachate on titanium dioxide membrane loaded on fiberglass cloth. Chongqing Environmental Science, 11, 023.Google Scholar
  70. Yang, Y. H., & Wang, J. S. (2004). Photocatolysis in degradation of environmental pollutants Using TiO2. Journal of Gansu Sciences, 3, 010.Google Scholar
  71. Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., et al. (2010). An efficient visible-light-sensitive Fe(III)-grafted Titania photocatalyst. The Journal of Physical Chemistry C, 114(39), 16481–16487.CrossRefGoogle Scholar
  72. Zhang, J., Zhu, H. H., Lei, K. C., & Quan, H. (2014, April). Study on photocatalytic degradation performance of nano carbon load WO3 doping Titania composites. In Advanced materials research (Vol. 881, pp. 901–904).Google Scholar
  73. Zhang, P. Y., Yu, G., Sun, H. T., Jiang, Z. P., & China, E. S. (2000). Preliminary study on the degradation of organic compound by integrated ozone/activated carbon. China Environmental Science-Chinese Edition, 20(2), 159–162.Google Scholar
  74. Zhou, C., Gong, Z., Hu, J., Cao, A., & Liang, H. (2015a). A cost-benefit analysis of landfill mining and material recycling in China. Waste Management, 35, 191–198.CrossRefGoogle Scholar
  75. Zhou, N., López-Puente, V., Wang, Q., Polavarapu, L., Pastoriza-Santos, I., & Xu, Q. H. (2015b). Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances, 5(37), 29076–29097.CrossRefGoogle Scholar
  76. Zhou, X., Zheng, Y., Zhou, J., & Zhou, S. (2015c). Degradation kinetics of photoelectrocatalysis on landfill leachate using codoped TiO2/Ti photoelectrodes. Journal of Nanomaterials, 2015, 7.Google Scholar
  77. Zhuang, J. J., Xiang, N., Lu, X. Y., Xiang, B., Xiong, Y., & Song, R. G. (2015). Improved photocatalytic activity of cerium doped Titania films prepared by microarc oxidation. Materials Technology: Advanced Performance Materials, 1753555715Y–0000000072.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nurhidayatullaili Muhd Julkapli
    • 1
  • Samira Bagheri
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations