Black Titania for Photodecomposition of Organic Compounds

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Hydrogenation is an easy and low-cost method for the modification on light adsorption of titania which has received immense attention owing to its highly ordered morphology and structure, perpendicular electron transfer channels, and excellent electric conductivity. Also, hydrogenation is a simple and facile process in which it does not involve the use of a catalyst and other chemicals and does not need further treatment including separation and purification. Thus, hydrogenation treatment of titania has been regarded as an effective way to obtain an efficient photocatalyst by improving its specific capacitance, surface disorder, O2 vacancies, donor density, and stability by controlling the introduction of O2 vacancy states. Furthermore, the OH group introduced on titania modifies the electrochemical activity of titania and thus increases its pseudo-capacitance. In order to increase the efficiency, the hydrogenated process normally complies with doped metal and metal ions. The solar absorption coefficient and wavelength range of hydrogenated titania increased as doping process, which increases the separation and the electrons transportation of electrons and holes. Thus, designing the hydrogenation and doping process considered as simple and versatile methods to overcome the limits solar adsorption, fast electron–hole pair recombination and poor electrochemical activity and conductivity of titania. This provides new option into the photocatalytic of hydrogenated titania and paves the way for further studies of other hydrogenated and doped metal oxides for photocatalysis system’s applications.

References

  1. Balouch, A., Ali Umar, A., Shah, A. A., Mat Salleh, M., & Oyama, M. (2013). Efficient heterogeneous catalytic hydrogenation of acetone to isopropanol on semihollow and porous palladium nanocatalyst. ACS Applied Materials & Interfaces, 5(19), 9843–9849.CrossRefGoogle Scholar
  2. Cao, Z., Yang, L., Chen, H., Xu, C., Qi, D., Zhu, S., et al. (2015). Preparation of Au/Titania nanocomposite particles with high visible-light photocatalytic activity in inverse miniemulsions. Colloid and Polymer Science, 293(1), 277–288.CrossRefGoogle Scholar
  3. Chen, X., Liu, L., Liu, Z., Marcus, M. A., Wang, W. C., Oyler, N. A., … & Guo, J. (2013). Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Scientific Reports, 3.Google Scholar
  4. Crossland, E. J., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A., & Snaith, H. J. (2013). Mesoporous Titania single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 495(7440), 215–219.CrossRefGoogle Scholar
  5. Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., et al. (2014). Defective black Titania synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 6(3), 1385–1388.CrossRefGoogle Scholar
  6. Fabian, D. M., Hu, S., Singh, N., Houle, F. A., Hisatomi, T., Domen, K., … & Ardo, S. (2015). Particle suspension reactors and materials for solar-driven water splitting. Energy & Environmental Science, 8(10), 2825–2850.Google Scholar
  7. Gallo, A., Montini, T., Marelli, M., Minguzzi, A., Gombac, V., Psaro, R., … & Dal Santo, V. (2012). H2 production by renewables photoreforming on Pt–Au/Titania catalysts activated by reduction. ChemSusChem, 5(9), 1800–1811.Google Scholar
  8. Gao, S., Yan, Y., & Chen, G. (2016). External Water-free approach toward Titania nanoparticles embedded in biomass-derived nitrogen-doped carbon. ACS Sustainable Chemistry & Engineering, 4(3), 844–850.CrossRefGoogle Scholar
  9. Goriparti, S., Miele, E., Prato, M., Scarpellini, A., Marras, S., Monaco, S., … & Manna, L. (2015). Direct synthesis of carbon-doped Titania–Bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Applied Materials & Interfaces, 7(45), 25139–25146.Google Scholar
  10. Guan, M., Xiao, C., Zhang, J., Fan, S., An, R., Cheng, Q., … & Xie, Y. (2013). Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. Journal of the American Chemical Society, 135(28), 10411–10417.Google Scholar
  11. He, H., Yang, K., Wang, N., Luo, F., & Chen, H. (2013). Hydrogenated Titania film for enhancing photovoltaic properties of solar cells and self-sensitized effect. Journal of Applied Physics, 114(21), 213505.CrossRefGoogle Scholar
  12. Henych, J., Štengl, V., Mattsson, A., & Österlund, L. (2015). In situ FTIR spectroscopy study of the photodegradation of acetaldehyde and azo dye photobleaching on bismuth-modified Titania. Photochemistry and Photobiology, 91(1), 48–58.CrossRefGoogle Scholar
  13. Hu, Y. H. (2012). A highly efficient photocatalyst—hydrogenated black Titania for the photocatalytic splitting of water. Angewandte Chemie International Edition, 51(50), 12410–12412.CrossRefGoogle Scholar
  14. Huang, Y., Li, H., Balogun, M. S., Liu, W., Tong, Y., Lu, X., et al. (2014). Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Applied Materials & Interfaces, 6(24), 22920–22927.CrossRefGoogle Scholar
  15. Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., et al. (2012). Characterization of oxygen vacancy associates within hydrogenated Titania: A positron annihilation study. The Journal of Physical Chemistry C, 116(42), 22619–22624.CrossRefGoogle Scholar
  16. Jin, J., Walczak, K., Singh, M. R., Karp, C., Lewis, N. S., & Xiang, C. (2014). An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science, 7(10), 3371–3380.CrossRefGoogle Scholar
  17. Kim, H. S., Lee, J. W., Yantara, N., Boix, P. P., Kulkarni, S. A., Mhaisalkar, S., … & Park, N. G. (2013). High efficiency solid-state sensitized solar cell-based on submicrometer rutile Titania nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Letters, 13(6), 2412–2417.Google Scholar
  18. Leshuk, T., Linley, S., & Gu, F. (2013). Hydrogenation processing of Titania nanoparticles. The Canadian Journal of Chemical Engineering, 91(5), 799–807.CrossRefGoogle Scholar
  19. Li, S., Qiu, J., Ling, M., Peng, F., Wood, B., & Zhang, S. (2013a). Photoelectrochemical characterization of hydrogenated Titania nanotubes as photoanodes for sensing applications. ACS Applied Materials & Interfaces, 5(21), 11129–11135.CrossRefGoogle Scholar
  20. Li, Y., Takata, T., Cha, D., Takanabe, K., Minegishi, T., Kubota, J., et al. (2013b). Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Advanced Materials, 25(1), 125–131.CrossRefGoogle Scholar
  21. Li, G., Zhang, Z., Peng, H., & Chen, K. (2013c). Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Advances, 3(29), 11507–11510.CrossRefGoogle Scholar
  22. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Müller, J., … & Schmuki, P. (2014). Black Titania nanotubes: Cocatalyst-free open-circuit hydrogen generation. Nano Letters, 14(6), 3309–3313.Google Scholar
  23. Ma, S. S. K., Maeda, K., Hisatomi, T., Tabata, M., Kudo, A., & Domen, K. (2013). A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst. Chemistry–A European Journal, 19(23), 7480–7486.CrossRefGoogle Scholar
  24. Mavlyankariev, S. A., Ahlers, S. J., Kondratenko, V. A., Linke, D., & Kondratenko, E. V. (2016). Effect of support and promoter on activity and selectivity of gold nanoparticles in propanol synthesis from CO2, C2H4, and H2. ACS Catalysis, 6(5), 3317–3325.CrossRefGoogle Scholar
  25. McKone, J. R., Lewis, N. S., & Gray, H. B. (2013). Will solar-driven water-splitting devices see the light of day? Chemistry of Materials, 26(1), 407–414.CrossRefGoogle Scholar
  26. Minguzzi, A., Sánchez-Sánchez, C. M., Gallo, A., Montiel, V., & Rondinini, S. (2014). Evidence of facilitated electron transfer on hydrogenated self-doped Titania nanocrystals. ChemElectroChem, 1(8), 1415–1421.CrossRefGoogle Scholar
  27. Mo, L. B., Bai, Y., Xiang, Q. Y., Li, Q., Wang, J. O., Ibrahim, K., et al. (2014). Band gap engineering of Titania through hydrogenation. Applied Physics Letters, 105(20), 202114.CrossRefGoogle Scholar
  28. Nguyen-Phan, T. D., Luo, S., Liu, Z., Gamalski, A. D., Tao, J., Xu, W., … & Rodriguez, J. A. (2015). Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene–Titania prototype. Chemistry of Materials, 27(18), 6282–6296.Google Scholar
  29. Pesci, F. M., Wang, G., Klug, D. R., Li, Y., & Cowan, A. J. (2013). Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated Titania nanowires for photoelectrochemical water splitting. The Journal of Physical Chemistry C, 117(48), 25837–25844.CrossRefGoogle Scholar
  30. Pu, Y. C., Wang, G., Chang, K. D., Ling, Y., Lin, Y. K., Fitzmorris, B. C., … & Hsu, Y. J. (2013). Goldnanostructure-decorated Titania nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 13(8), 3817–3823.Google Scholar
  31. Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q. F., Sun, C., et al. (2014). Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. The Journal of Physical Chemistry C, 118(17), 8824–8830.  http://doi.org/10.1021/jp501819p.
  32. Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q. F., Sun, C., … & Zhang, S. (2014). Hydrogenation synthesis of blue Titania for high-performance lithium-ion batteries. The Journal of Physical Chemistry C, 118(17), 8824–8830.Google Scholar
  33. Qiu, B., Zhou, Y., Ma, Y., Yang, X., Sheng, W., Xing, M., & Zhang, J. (2015). Facile synthesis of the Ti3+ self-doped Titania-graphene nanosheet composites with enhanced photocatalysis. Scientific Reports, 5.Google Scholar
  34. Reif, J. H., & Alhalabi, W. (2015). Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, 48, 152–165.CrossRefGoogle Scholar
  35. Ren, W., Yan, Y., Zeng, L., Shi, Z., Gong, A., Schaaf, P., … & Chen, G. (2015). A near infrared light triggered hydrogenated black Titania for cancer photothermal therapy. Advanced Healthcare Materials, 4(10), 1526–1536.Google Scholar
  36. Rex, R. E., Knorr, F. J., & McHale, J. L. (2013). Comment on “characterization of oxygen vacancy associates within hydrogenated Titania: A positron annihilation study”. The Journal of Physical Chemistry C, 117(15), 7949–7951.CrossRefGoogle Scholar
  37. Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., … & Watson, G. W. (2013). Band alignment of rutile and anatase Titania. Nature Materials, 12(9), 798–801.Google Scholar
  38. Sharma, A. K., Joshi, H., Sharma, K. N., Gupta, P. L., & Singh, A. K. (2014). 2-Propanol vs glycerol as hydrogen source in catalytic activation of transfer hydrogenation with (η6-Benzene) ruthenium (II) complexes of unsymmetrical bidentate chalcogen ligands. Organometallics, 33(13), 3629–3639.CrossRefGoogle Scholar
  39. Singh, G. K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1–13.CrossRefGoogle Scholar
  40. Su, T., Yang, Y., Na, Y., Fan, R., Li, L., Wei, L., … & Cao, W. (2015). An insight into the role of oxygen vacancy in hydrogenated Titania nanocrystals in the performance of dye-sensitized solar cells. ACS Applied Materials & Interfaces, 7(6), 3754–3763.Google Scholar
  41. Tang, M., Mao, S., Li, M., Wei, Z., Xu, F., Li, H., et al. (2015). RuPd alloy nanoparticles supported on N-doped carbon as an efficient and stable catalyst for benzoic acid hydrogenation. ACS Catalysis, 5(5), 3100–3107.CrossRefGoogle Scholar
  42. Wang, G., Ling, Y., Lu, X., Qian, F., Tong, Y., Zhang, J. Z., … & Li, Y. (2013a). Computational and photoelectrochemical study of hydrogenated bismuth vanadate. The Journal of Physical Chemistry C, 117(21), 10957–10964.Google Scholar
  43. Wang, M., Wang, J., Zhao, Y., Zhao, P., & Dai, Y. (2013b). Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors. Applied Thermal Engineering, 50(1), 816–825.CrossRefGoogle Scholar
  44. Wang, G., Xiao, X., Li, W., Lin, Z., Zhao, Z., Chen, C., … & Jiang, C. (2015a). Significantly enhanced visible light photoelectrochemical activity in Titania nanowire arrays by nitrogen implantation. Nano Letters, 15(7), 4692–4698.Google Scholar
  45. Wang, N., Yue, J., Chen, L., Qian, Y., & Yang, J. (2015b). Hydrogenated Titania branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Applied Materials & Interfaces, 7(19), 10348–10355.CrossRefGoogle Scholar
  46. Wei, W., Yaru, N., Chunhua, L., & Zhongzi, X. (2012). Hydrogenation of TiO2 nanosheets with exposed 001 facets for enhanced photocatalytc activity. RSC Advances, 2(22), 8286–8288.CrossRefGoogle Scholar
  47. Wu, Q., & van de Krol, R. (2012). Selective photoreduction of nitric oxide to nitrogen by nanostructured Titania photocatalysts: Role of oxygen vacancies and iron dopant. Journal of the American Chemical Society, 134(22), 9369–9375.CrossRefGoogle Scholar
  48. Xu, J., Wu, H., Lu, L., Leung, S. F., Chen, D., Chen, X., … & Li, D. (2014). Integrated Photo-supercapacitor based on Bi-polar Titania nanotube arrays with selective one-side plasma-assisted hydrogenation. Advanced Functional Materials, 24(13), 1840–1846.Google Scholar
  49. Yan, Y. (2015). Plasma-assisted synthesis of hydrogenated Titania for energy storage and conversion (Doctoral dissertation, Ilmenau, Techn. Univ., Diss., 2015).Google Scholar
  50. Yang, S., Lin, Y., Song, X., Zhang, P., & Gao, L. (2015). Covalently coupled ultrafine H-Titania nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Applied Materials & Interfaces, 7(32), 17884–17892.CrossRefGoogle Scholar
  51. Yang, Y., Ling, Y., Wang, G., & Li, Y. (2014). The effect of the hydrogenation temperature on Titania nanostructures for photoelectrochemical water oxidation. European Journal of Inorganic Chemistry, 2014(4), 760–766.CrossRefGoogle Scholar
  52. Yu, X., Kim, B., & Kim, Y. K. (2013). Highly enhanced photoactivity of anatase Titania nanocrystals by controlled hydrogenation-induced surface defects. ACS Catalysis, 3(11), 2479–2486.CrossRefGoogle Scholar
  53. Yu, J., Low, J., Xiao, W., Zhou, P., & Jaroniec, M. (2014). Enhanced photocatalytic CO2-reduction activity of anatase Titania by coexposed {001} and {101} facets. Journal of the American Chemical Society, 136(25), 8839–8842.CrossRefGoogle Scholar
  54. Zhang, X. Q., Chen, J. B., Zhu, W. D., & Wang, C. W. (2014). Enhanced field emission from hydrogenated SnO2 nanoparticles embedded in Titania film on fluorinated tin oxide substrate. Journal of Vacuum Science and Technology B, 32(2), 021808.CrossRefGoogle Scholar
  55. Zhang, Z., Hedhili, M. N., Zhu, H., & Wang, P. (2013). Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on Titania based photoelectrodes. Physical Chemistry Chemical Physics, 15(37), 15637–15644.CrossRefGoogle Scholar
  56. Zhou, W., Li, W., Wang, J. Q., Qu, Y., Yang, Y., Xie, Y., … & Zhao, D. (2014). Ordered Mesoporous black Titania as highly efficient hydrogen evolution photocatalyst. Journal of the American Chemical Society, 136(26), 9280–9283.Google Scholar
  57. Zhu, W. D., Wang, C. W., Chen, J. B., Li, D. S., Zhou, F., & Zhang, H. L. (2012). Enhanced field emission from hydrogenated Titania nanotube arrays. Nanotechnology, 23(45), 455204.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Bagheri
    • 1
  • Nurhidayatullaili Muhd Julkapli
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations