Advertisement

Surface Modification of Titania/Gold Nanoparticles for Photocatalytic Applications

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Gold nanoparticles measuring 3–30 nm deposited on semiconductors result in an effective photocatalysis system against several pollutants. Its photocatalytic activities are significant under both UV and solar irradiation. In a photocatalytic system, the oxidation of pollutants takes place on the gold surface as the electron donor, while the electron is consumed by the reduction of oxygen as electron acceptor on the semiconductor’s surface. This promotes not only increased photocatalytic activities but also the green transformation of pollutant compounds to harmless compounds. Photosensitivity of semiconductors can be modified by tuning the size, shape, and contact of gold nanoparticles. This chapter highlights the function of gold nanoparticles in overcoming the limitation of transition metal oxide materials in photocatalytic applications.

References

  1. Alvaro, M., Cojocaru, B., Ismail, A. A., Petrea, N., Ferrer, B., Harraz, F. A., … & Garcia, H. (2010). Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 99(1), 191–197. Google Scholar
  2. Amir, M. N. I., Julkapli, N. M., & Hamid, S. B. A. (2016a). Incorporation of chitosan and glass substrate for improvement on adsorption, separation and stability of titania photocatalysis. International Journal of Natural Sciences Research, 4(1), 6–14.CrossRefGoogle Scholar
  3. Amir, M. N. I., Muhd Julkapli, N., & Hamid, S. B. A. (2016b). Effective adsorption and photodegradation of methyl orange by Titania-chitosan supported glass plate photocatalysis. Materials Technology, 1–9.Google Scholar
  4. Arabatzis, I. M., Stergiopoulos, T., Andreeva, D., Kitova, S., Neophytides, S. G., & Falaras, P. (2003). Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. Journal of Catalysis, 220(1), 127–135.CrossRefGoogle Scholar
  5. Azubel, M., & Kornberg, R. D. (2016). Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Letters, 16(5), 3348–3351.CrossRefGoogle Scholar
  6. Bagheri, S., & Julkapli, N. M. (2016). Synergistic effects on hydrogenated TiO2 for photodegradation of synthetic compounds pollutants. International Journal of Hydrogen Energy.Google Scholar
  7. Bagheri, S., Muhd Julkapli, N., & Bee Abd Hamid, S. (2015). Functionalized activated carbon derived from biomass for photocatalysis applications perspective. International Journal of Photoenergy, 2015.Google Scholar
  8. Chen, Z., Holst, B., Kirkwood, S. E., Sametoglu, V., Reid, M., Tsui, Y. Y., … & Ng, A. (2013). Evolution of ac conductivity in nonequilibrium warm dense gold. Physical review letters, 110(13), 135001.Google Scholar
  9. Choi, H., Shin, D., Yeo, B. C., Song, T., Han, S. S., Park, N., et al. (2016). Simultaneously controllable doping sites and the activity of a W-N codoped titania photocatalyst. ACS Catalysis, 6(5), 2745–2753.CrossRefGoogle Scholar
  10. Dawson, A., & Kamat, P. V. (2001). Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped Titania (Titania/gold) nanoparticles. The Journal of Physical Chemistry B, 105(5), 960–966.CrossRefGoogle Scholar
  11. Devi, L. G., & Kavitha, R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis, B: Environmental, 140, 559–587.CrossRefGoogle Scholar
  12. Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the least known Titania photocatalyst. Catalysts, 3(1), 36–73.CrossRefGoogle Scholar
  13. Dozzi, M. V., & Selli, E. (2013). Doping TiO2 with p-block elements: effects on photocatalytic activity. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14, 13–28.CrossRefGoogle Scholar
  14. Fisher, M. B., Keane, D. A., Fernandez-Ibanez, P., Colreavy, J., Hinder, S. J., McGuigan, K. G., et al. (2013). Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Applied Catalysis, B: Environmental, 130, 8–13.CrossRefGoogle Scholar
  15. Fürstner, A. (2013). From understanding to prediction: Gold-and platinum-based π-acid catalysis for target oriented synthesis. Accounts of Chemical Research, 47(3), 925–938.CrossRefGoogle Scholar
  16. Gotić, M., Musić, S., Ivanda, M., Šoufek, M., & Popović, S. (2005). Synthesis and characterization of bismuth (III) vanadate. Journal of Molecular Structure, 744, 535–540.Google Scholar
  17. Grimaldi, C., Cattani, M., & Salvadori, M. C. (2015). Dimensional effects on the tunneling conductivity of gold-implanted nanocomposite films. Journal of Applied Physics, 117(12), 125302.CrossRefGoogle Scholar
  18. Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., et al. (2012). Simple gold-catalyzed synthesis of benzofulvenes—gem-diaurated species as “instant dual-activation” precatalysts. Angewandte Chemie International Edition, 51(18), 4456–4460.CrossRefGoogle Scholar
  19. He, R., Wang, Y. C., Wang, X., Wang, Z., Liu, G., Zhou, W., … & Zeng, J. (2014). Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nature communications, 5.Google Scholar
  20. Hou, Y., Li, X., Zhao, Q., & Chen, G. (2013). ZnFe2 O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Applied Catalysis, B: Environmental, 142, 80–88.CrossRefGoogle Scholar
  21. Huang, Z. F., Pan, L., Zou, J. J., Zhang, X., & Wang, L. (2014). Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress. Nanoscale, 6(23), 14044–14063.CrossRefGoogle Scholar
  22. Ide, Y., Torii, M., & Sano, T. (2013). Layered silicate as an excellent partner of a Titania photocatalyst for efficient and selective green fine-chemical synthesis. Journal of the American Chemical Society, 135(32), 11784–11786.CrossRefGoogle Scholar
  23. Islam, M. A., Khan, M. E., Hossain, M. M., & Hasan, M. (2016). Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@ polyaniline composites. Progress in Natural Science: Materials International.Google Scholar
  24. Kamaliya, B., Kumar, M. V., Yelamaggad, C. V., & Prasad, S. K. (2015). Enhancement of electrical conductivity of a liquid crystal-gold nanoparticle composite by a gel network of aerosil particles. Applied Physics Letters, 106(8), 083110.CrossRefGoogle Scholar
  25. Kamegawa, T., Matsuura, S., Seto, H., & Yamashita, H. (2013). A visible-light-harvesting assembly with a sulfocalixarene linker between dyes and a Pt-titania photocatalyst. Angewandte Chemie International Edition, 52(3), 916–919.CrossRefGoogle Scholar
  26. Kida, T. (2008). Synthesis of gold nanosheets at a liquid/liquid interface using an amphiphilic polyoxometallate/surfactant hybrid photocatalyst. Langmuir, 24(15), 7648–7650.CrossRefGoogle Scholar
  27. Kowalska, E., Mahaney, O. O. P., Abe, R., & Ohtani, B. (2010). Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Physical Chemistry Chemical Physics, 12(10), 2344–2355.CrossRefGoogle Scholar
  28. Lee, D. J., Kim, H., Park, Y. K., Kim, B. H., Lee, H., & Jung, S. C. (2016). Preparation of low molecular weight gelatin using microwave discharge electrodeless lamp/Titania photocatalyst hybrid system. Journal of Nanoscience and Nanotechnology, 16(2), 2057–2060.CrossRefGoogle Scholar
  29. Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., & Lu, Y. (2007). Mesoporous Au/Titania nanocomposites with enhanced photocatalytic activity. Journal of the American Chemical Society, 129(15), 4538–4539.CrossRefGoogle Scholar
  30. Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 53(7), 1756–1789.CrossRefGoogle Scholar
  31. Li, Y., Brand, J. P., & Waser, J. (2013). Gold-catalyzed regioselective synthesis of 2-and 3-Alkynyl Furans. Angewandte Chemie, 125(26), 6875–6879.CrossRefGoogle Scholar
  32. Linde, F., Yadavalli, N. S., & Santer, S. (2013). Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film. Applied Physics Letters, 103(25), 253101.CrossRefGoogle Scholar
  33. Liu, R., Wang, P., Wang, X., Yu, H., & Yu, J. (2012a). UV-and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag (I)-Titania photocatalyst. The Journal of Physical Chemistry C, 116(33), 17721–17728.CrossRefGoogle Scholar
  34. Liu, Y., Dai, H., Deng, J., Zhang, L., & Au, C. T. (2012b). Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale, 4(7), 2317–2325.CrossRefGoogle Scholar
  35. Lohse, S. E., Eller, J. R., Sivapalan, S. T., Plews, M. R., & Murphy, C. J. (2013). A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano, 7(5), 4135–4150.CrossRefGoogle Scholar
  36. Mohd Adnan, M. A., Julkapli, N. M., & Abd Hamid, S. B. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry, 36(2), 77–104.CrossRefGoogle Scholar
  37. Murdoch, M., Waterhouse, G. I. N., Nadeem, M. A., Metson, J. B., Keane, M. A., Howe, R. F., … & Idriss, H. (2011). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/Titania nanoparticles. Nature Chemistry, 3(6), 489–492.Google Scholar
  38. Nainani, R., Thakur, P., & Chaskar, M. (2012). Synthesis of silver doped Titania nanoparticles for the improved photocatalytic degradation of methyl orange. Journal of Materials Science and Engineering B, 2(1), 52–58.Google Scholar
  39. Naufal, B., Jaseela, P. K., & Periyat, P. (2016). Direct sunlight active Sm3 + doped Titania photocatalyst. In Materials Science Forum (Vol. 855, pp. 33–44). Trans Tech Publications.Google Scholar
  40. Naya, S. I., Inoue, A., & Tada, H. (2010). Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium (IV) dioxide and surfactant. Journal of the American Chemical Society, 132(18), 6292–6293.CrossRefGoogle Scholar
  41. Ng, Y. H., Iwase, A., Kudo, A., & Amal, R. (2010). Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. The Journal of Physical Chemistry Letters, 1(17), 2607–2612.CrossRefGoogle Scholar
  42. Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., … & Entezari, M. H. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.Google Scholar
  43. Petrov, Y. V., Inogamov, N. A., & Migdal, K. P. (2015a). Two-temperature heat conductivity of gold. Session 4A2 Laser Nanofabrication, Characterization and Physical Properties, 2, 1908.Google Scholar
  44. Petrov, Y. V., Inogamov, N. A., Anisimov, S. I., Migdal, K. P., Khokhlov, V. A., & Khishchenko, K. V. (2015b). Thermal conductivity of condensed gold in states with the strongly excited electron subsystem. Journal of Physics: Conference Series, 653(1), 012087) (IOP Publishing).Google Scholar
  45. Rudolph, M., & Hashmi, A. S. K. (2012). Gold catalysis in total synthesis—an update. Chemical Society Reviews, 41(6), 2448–2462.CrossRefGoogle Scholar
  46. Sarina, S., Zhu, H., Jaatinen, E., Xiao, Q., Liu, H., Jia, J., … & Zhao, J. (2013). Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. Journal of the American Chemical Society, 135(15), 5793–5801.Google Scholar
  47. Seh, Z. W., Liu, S., Low, M., Zhang, S. Y., Liu, Z., Mlayah, A., et al. (2012). Janus Au-Titania photocatalysts with strong localization of plasmonic near-fields for efficient visible-light Hydrogen generation. Advanced Materials, 24(17), 2310–2314.CrossRefGoogle Scholar
  48. Shi, S., Gondal, M. A., Al-Saadi, A. A., Fajgar, R., Kupcik, J., Chang, X., … & Seddigi, Z. S. (2014). Facile preparation of gC3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement. Journal of colloid and interface science, 416, 212–219.Google Scholar
  49. Subramanian, V., Wolf, E. E., & Kamat, P. V. (2003). Influence of metal/metal ion concentration on the photocatalytic activity of Titania-Gold composite nanoparticles. Langmuir, 19(2), 469–474.CrossRefGoogle Scholar
  50. Tian, Y., & Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at Titania films loaded with Gold nanoparticles. Journal of the American Chemical Society, 127(20), 7632–7637.CrossRefGoogle Scholar
  51. Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., … & Murray, C. B. (2012). Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS nano, 6(3), 2804–2817.Google Scholar
  52. Yu, Y., Wang, J., & Parr, J. F. (2012). Preparation and properties of Titania/fumed silica composite photocatalytic materials. Procedia Engineering, 27, 448–456.CrossRefGoogle Scholar
  53. Yuan, H., Khoury, C. G., Hwang, H., Wilson, C. M., Grant, G. A., & Vo-Dinh, T. (2012). Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology, 23(7), 075102.CrossRefGoogle Scholar
  54. Zhang, A. Y., Wang, W. K., Pei, D. N., & Yu, H. Q. (2016a). Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Research, 92, 78–86.CrossRefGoogle Scholar
  55. Zhang, Z., Xu, M., Ho, W., Zhang, X., Yang, Z., & Wang, X. (2016b). Simultaneous excitation of PdCl2 hybrid mesoporous gC3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides. Applied Catalysis, B: Environmental, 184, 174–181.CrossRefGoogle Scholar
  56. Zhang, K., Wang, X., Guo, X., He, T., & Feng, Y. (2014). Preparation of highly visible light active Fe–N co-doped mesoporous Titania photocatalyst by fast sol–gel method. Journal of Nanoparticle Research, 16(2), 1–9.Google Scholar
  57. Zhang, L., Chen, D., & Jiao, X. (2006). Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. The Journal of Physical Chemistry B, 110(6), 2668–2673.CrossRefGoogle Scholar
  58. Zhou, Y., Liu, Q., Lv, W., Pang, Q., Ben, R., Qian, Y., et al. (2013). Indazolin-s-ylidene–N-Heterocyclic Carbene complexes of Rhodium, Palladium, and Gold: Synthesis, characterization, and catalytic hydration of alkynes. Organometallics, 32(13), 3753–3759.CrossRefGoogle Scholar
  59. Zou, J. P., Wang, L. C., Luo, J., Nie, Y. C., Xing, Q. J., Luo, X. B., … & Suib, S. L. (2016). Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free gC3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental, 193, 103–109.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nurhidayatullaili Muhd Julkapli
    • 1
  • Samira Bagheri
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations