Enhanced Photocatalytic Activity by Using Modification Activated Carbon

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The core purpose of this chapter is to focus the developments of effective, safe, economic, and eco-friendly catalytic systems to convert lignocellulosic biomass to the activated carbon materials. The synthesized activated carbon can be further used as a support material in the photocatalysis applications. The drawbacks of activated carbon productions raised by energy assumption and product selectivity have uplifted to develop sustainable carbon for the synthesis process, where catalytic conversion is accounted. This catalytic conversion process through either homogeneous or heterogeneous approach conforming to mild condition provided bulk, nanostructure, and mesoporous carbon materials. These features of carbon nanomaterials are basic necessities for the efficient photocatalytic and low-energy systems. Because of the excellent oxidizing features, long-term stability, and cheapness, semiconductor nanostructures are utilized greatly in photocatalytic reactors. In practical, such conductors suffer from loss of photocatalytic activity and separation steps. To overcome such drawbacks, appropriate consideration has been specified to improve supported semiconductor nanocatalysts, and certain matrixes of carbon nanomaterials such as carbon nanofibers, carbon nanotubes, carbon microspheres, activated carbons, and carbon black have been lately considered and reported. Activated carbon has been reported as a potential catalyst support in the photocatalytic systems due to its ability to improve the interface charge transfer rate and lowers the holes and the electrons recombination rate.

References

  1. Akiyama, G., Matsuda, R., Sato, H., Takata, M., & Kitagawa, S. (2011). Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Advanced Materials, 23(29), 3294–3297.CrossRefGoogle Scholar
  2. Amir, I., Nur, M., Julkapli, N. M., Bagheri, S., & Yousefi, A. T. (2015). Titania hybrid photocatalytic systems: Impact of adsorption and photocatalytic performance. Reviews in Inorganic Chemistry, 35(3), 151–178.Google Scholar
  3. Amir, M. N. I., Muhd Julkapli, N., & Hamid, S. B. A. (2017). Effective adsorption and photodegradation of methyl orange by Titania-chitosan supported glass plate photocatalysis. Materials Technology, 32(4), 256–264.CrossRefGoogle Scholar
  4. Andronic, L., Enesca, A., Cazan, C., & Visa, M. (2014). Titania–active carbon composites for wastewater photocatalysis. Journal of Sol–Gel Science and Technology, 71(3), 396–405.CrossRefGoogle Scholar
  5. Ao, Y., Xu, J., Fu, D., Ba, L., & Yuan, C. (2008). Deposition of anatase titania onto carbon encapsulated magnetite nanoparticles. Nanotechnology, 19(40), 405604.CrossRefGoogle Scholar
  6. Aruldoss, U., Kennedy, L. J., Vijaya, J. J., & Sekaran, G. (2011). Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. Journal of Colloid and Interface Science, 355(1), 204–209.CrossRefGoogle Scholar
  7. Ashik, U. P. M., Daud, W. W., & Abbas, H. F. (2017). Methane decomposition kinetics and reaction rate over Ni/SiO2 nanocatalyst produced through co-precipitation cum modified Stöber method. International Journal of Hydrogen Energy, 42(2), 938–952.CrossRefGoogle Scholar
  8. Azeez, A. M., Meier, D., Odermatt, J., & Willner, T. (2011). Effects of zeolites on volatile products of beech wood using analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 91(2), 296–302.CrossRefGoogle Scholar
  9. Babadi, A. A., Bagheri, S., & Hamid, S. B. A. (2016). Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosensors and Bioelectronics, 79, 850–860.CrossRefGoogle Scholar
  10. Bagheri, S., Shameli, K., & Abd Hamid, S. B. (2012). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol–Gel method. Journal of Chemistry, 2013.Google Scholar
  11. Chambon, F., Rataboul, F., Pinel, C., Cabiac, A., Guillon, E., & Essayem, N. (2011). Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis, B: Environmental, 105(1), 171–181.CrossRefGoogle Scholar
  12. Chen, N. Y. (1996). Shape selective catalysis in industrial applications (Vol. 65). CRC press.Google Scholar
  13. Cheng, M., Shi, T., Guan, H., Wang, S., Wang, X., & Jiang, Z. (2011). Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst. Applied Catalysis, B: Environmental, 107(1), 104–109.CrossRefGoogle Scholar
  14. dos Santos, J. B., da Silva, F. L., Altino, F. M. R. S., da Silva Moreira, T., Meneghetti, M. R., & Meneghetti, S. M. P. (2013). Cellulose conversion in the presence of catalysts based on Sn (IV). Catalysis Science and Technology, 3(3), 673–678.CrossRefGoogle Scholar
  15. Dreher, M., Johnson, B., Peterson, A. A., Nachtegaal, M., Wambach, J., & Vogel, F. (2013). Catalysis in supercritical water: pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. Journal of Catalysis, 301, 38–45.CrossRefGoogle Scholar
  16. Elangovan, S. V., Sivakumar, N., & Chandramohan, V. (2015). Magnesium doped zinc oxide nanocrystals for photo-catalytic applications. Journal of Materials Science: Materials in Electronics, 26(11), 8753–8759.Google Scholar
  17. Eliyas, A., Ljutzkanov, L., Stambolova, I., Blaskov, V., Vassilev, S., Razkazova-Velkova, E., et al. (2013). Visible light photocatalytic activity of Titania deposited on activated carbon. Open Chemistry, 11(3), 464–470.CrossRefGoogle Scholar
  18. Gao, Y., & Liu, H. (2005). Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Materials Chemistry and Physics, 92(2), 604–608.CrossRefGoogle Scholar
  19. Gondal, M. A., Li, C., Chang, X., Sikong, L., Yamani, Z. H., Zhou, Q., … & Lin Q. (2012). Facile preparation of magnetic C/Titania/Ni composites and their photocatalytic performance for removal of a dye from water under UV light irradiation. Journal of Environmental Science and Health, Part A, 47(4), 570–576.Google Scholar
  20. Heinze, T., & Gericke, M. (2014). Ionic liquids as solvents for homogeneous derivatization of cellulose: Challenges and opportunities. Production of Biofuels and Chemicals with Ionic Liquids (pp. 107–144). Netherlands: Springer.CrossRefGoogle Scholar
  21. Hu, L., Sun, Y., Lin, L., & Liu, S. (2012). 12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 47, 289–294.CrossRefGoogle Scholar
  22. Huang, Z. F., Zou, J. J., Pan, L., Wang, S., Zhang, X., & Wang, L. (2014). Synergetic promotion on photoactivity and stability of W18O49/TiO2hybrid. Applied Catalysis, B: Environmental, 147, 167–174.CrossRefGoogle Scholar
  23. Igarashi, K. (2013). Cellulases: Cooperative biomass breakdown. Nature Chemical Biology, 9(6), 350–351.CrossRefGoogle Scholar
  24. Johnson, J. T., & Panas, I. (2000). Water adsorption and hydrolysis on molecular transition metal oxides and oxyhydroxides. Inorganic Chemistry, 39(15), 3181–3191.CrossRefGoogle Scholar
  25. Jung, H. J., Hong, J. S., & Suh, J. K. (2013). A comparison of fenton oxidation and photocatalyst reaction efficiency for humic acid degradation. Journal of Industrial and Engineering Chemistry, 19(4), 1325–1330.CrossRefGoogle Scholar
  26. Khan, M., Jiang, P., Li, J., & Cao, W. (2014). Enhanced photoelectrochemical properties of Titania by codoping with tungsten and silver. Journal of Applied Physics, 115(15), 153103.CrossRefGoogle Scholar
  27. Koller, M., Dias, M. M. D. S., Rodríguez-Contreras, A., Kunaver, M., Žagar, E., Kržan, A., et al. (2015). Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate into polyhydroxyalkanoates. Materials, 8(9), 6543–6557.CrossRefGoogle Scholar
  28. Kuo, C. Y., Wu, C. H., & Chen, S. T. (2014). Decolorization of CI reactive Red 2 by UV/Titania/PAC and visible light/Titania/PAC systems. Desalination and Water Treatment, 52(4–6), 834–843.CrossRefGoogle Scholar
  29. Lee, H., Kim, C., Yang, S., Han, J. W., & Kim, J. (2012). Shape-controlled nanocrystals for catalytic applications. Catalysis Surveys from Asia, 16(1), 14–27.CrossRefGoogle Scholar
  30. Lee, J. Y., Lee, B. M., Jeun, J. P., & Kang, P. H. (2014). Pretreatment of kenaf core by combined electron beam irradiation and water steam for enhanced hydrolysis. Korean Chemical Engineering Research, 52(1), 113–118.CrossRefGoogle Scholar
  31. Li, W., & Liu, S. (2012). Bifunctional activated carbon with dual photocatalysis and adsorption capabilities for efficient phenol removal. Adsorption, 18(2), 67–74.CrossRefGoogle Scholar
  32. Li, H., Pan, L., Nie, C., Liu, Y., & Sun, Z. (2012). Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry, 22(31), 15556–15561.CrossRefGoogle Scholar
  33. Li, D., Ishikawa, C., Koike, M., Wang, L., Nakagawa, Y., & Tomishige, K. (2013). Production of renewable hydrogen by steam reforming of tar from biomass pyrolysis over supported Co catalysts. International Journal of Hydrogen Energy, 38(9), 3572–3581.CrossRefGoogle Scholar
  34. Li, H., Zhang, Q., Riisager, A., & Yang, S. (2015). Catalytic valorization of cellulose and cellobiose with nanoparticles. Current Nanoscience, 11(1), 1–14.CrossRefGoogle Scholar
  35. Liao, Z. H., Chen, J. J., Yao, K. F., Zhao, F. H., & Li, R. X. (2004). Progress of nanometer-TiO2 photocatalyst immobilization [J]. Journal of Inorganic Materials, 1, 002.Google Scholar
  36. Liu, M., Jia, S., Gong, Y., Song, C., & Guo, X. (2013). Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Industrial and Engineering Chemistry Research, 52(24), 8167–8173.CrossRefGoogle Scholar
  37. Liu, J., He, Y., Ma, X., Liu, G., Yao, Y., Liu, H., … & Wang, W. (2016). Catalytic pyrolysis of tar model compound with various bio-char catalysts to recycle char from biomass pyrolysis. BioResources, 11(2), 3752–3768.Google Scholar
  38. Louis, B., Vicente, A., Fernandez, C., & Valtchev, V. (2011). Crystal size-acid sites relationship study of nano-and micrometer-sized zeolite crystals. The Journal of Physical Chemistry C, 115(38), 18603–18610.CrossRefGoogle Scholar
  39. Mante, O. D., Agblevor, F. A., & McClung, R. (2013). A study on catalytic pyrolysis of biomass with Y-zeolite based FCC catalyst using response surface methodology. Fuel, 108, 451–464.CrossRefGoogle Scholar
  40. Masters, A. F., & Maschmeyer, T. (2011). Zeolites-from curiosity to cornerstone. Microporous and Mesoporous Materials, 142(2), 423–438.CrossRefGoogle Scholar
  41. McEvoy, J. G., Bilodeau, D. A., Cui, W., & Zhang, Z. (2013). Visible-light-driven inactivation of Escherichia coli K-12 using an Ag/AgCl–activated carbon composite photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 267, 25–34.CrossRefGoogle Scholar
  42. Nandiwale, K. Y., Galande, N. D., Thakur, P., Sawant, S. D., Zambre, V. P., & Bokade, V. V. (2014). One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustainable Chemistry and Engineering, 2(7), 1928–1932.CrossRefGoogle Scholar
  43. Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., … & Okano, T. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New England Journal of Medicine, 351(12), 1187–1196.Google Scholar
  44. Pamecha, K., Mehta, V., & Kabra, B. V. (2016). Photocatalytic degradation of commercial textile Azo Dye Reactive Blue 160 by heterogeneous photocatalysis. Advanced Applied Science and Research, 7, 95–101.Google Scholar
  45. Patil, S. K., & Lund, C. R. (2011). Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy and Fuels, 25(10), 4745–4755.CrossRefGoogle Scholar
  46. Poonjarernsilp, C., Sano, N., & Tamon, H. (2014). Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis, B: Environmental, 147, 726–732.CrossRefGoogle Scholar
  47. Quiñones, D. H., Rey, A., Álvarez, P. M., Beltrán, F. J., & Plucinski, P. K. (2014). Enhanced activity and reusability of TiO2 loaded magnetic activated carbon for solar photocatalytic ozonation. Applied Catalysis, B: Environmental, 144, 96–106.CrossRefGoogle Scholar
  48. Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289.CrossRefGoogle Scholar
  49. Shimomura, K., Dickson, L., & Walton, H. F. (1967). Separation of amines by ligand exchange: Part IV ligand exchange with chelating resins and cellulosic exchangers. Analytica Chimica Acta, 37, 102–111.CrossRefGoogle Scholar
  50. Sin, J. C., Lam, S. M., & Mohamed, A. R. (2011). Optimizing photocatalytic degradation of phenol by TiO2/GAC using response surface methodology. Korean Journal of Chemical Engineering, 28(1), 84–92.CrossRefGoogle Scholar
  51. Slimen, H., Houas, A., & Nogier, J. P. (2011). Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1), 13–21.CrossRefGoogle Scholar
  52. Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., & Hayashi, S. (2008). Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society, 130(38), 12787–12793.CrossRefGoogle Scholar
  53. Tong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis, A: General, 385(1), 1–13.CrossRefGoogle Scholar
  54. Tryba, B., Morawski, A. W., & Inagaki, M. (2003). Application of TiO2-mounted activated carbon to the removal of phenol from water. Applied Catalysis, B: Environmental, 41(4), 427–433.CrossRefGoogle Scholar
  55. Velo-Gala, I., López-Peñalver, J. J., Sánchez-Polo, M., & Rivera-Utrilla, J. (2013). Activated carbon as photocatalyst of reactions in aqueous phase. Applied Catalysis, B: Environmental, 142, 694–704.CrossRefGoogle Scholar
  56. Vuyyuru, K. R., & Strasser, P. (2012). Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 195(1), 144–154.CrossRefGoogle Scholar
  57. Wang, J., Fang, L., Lopez, D., & Tobias, H. (1993). Highly selective and sensitive amperometric biosensing of glucose at ruthenium-dispersed carbon paste enzyme electrodes. Analytical Letters, 26(9), 1819–1830.CrossRefGoogle Scholar
  58. Wang, Y., Li, X., Lu, G., Quan, X., & Chen, G. (2008). Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. The Journal of Physical Chemistry C, 112(19), 7332–7336.CrossRefGoogle Scholar
  59. Wang, H., Zhu, L., Peng, S., Peng, F., Yu, H., & Yang, J. (2012). High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renewable Energy, 37(1), 192–196.CrossRefGoogle Scholar
  60. Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N., et al. (2014). Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources, 9(4), 5988–6001.CrossRefGoogle Scholar
  61. Wei, Z., Li, Y., Thushara, D., Liu, Y., & Ren, Q. (2011). Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Goldchlorides in ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 363–370.CrossRefGoogle Scholar
  62. Weingarten, R., Kim, Y. T., Tompsett, G. A., Fernández, A., Han, K. S., Hagaman, E. W., … & Huber, G. W. (2013). Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. Journal of Catalysis, 304, 123–134.Google Scholar
  63. Williams, A., Jones, J. M., Ma, L., & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113–137.CrossRefGoogle Scholar
  64. Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic carbon-nanotube–Titania composites. Advanced Materials, 21(21), 2233–2239.CrossRefGoogle Scholar
  65. Xu, H. Y., Liu, W. C., Shi, J., Zhao, H., & Qi, S. Y. (2014). Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: Optimization using response surface method. Environmental Science and Pollution Research, 21(2), 1582–1591.CrossRefGoogle Scholar
  66. Yabushita, M., Kobayashi, H., & Fukuoka, A. (2014). Catalytic transformation of cellulose into platform chemicals. Applied Catalysis, B: Environmental, 145, 1–9.CrossRefGoogle Scholar
  67. Yang, B., & Bai, M. D. (2014). Preparation of NaInS2 with Hierarchical Nanostructure Toward Visible Light-Induced H2 Production. In Applied Mechanics and Materials (Vol. 448, pp. 2946–2949). Trans Tech Publications.Google Scholar
  68. Yang, P., Kobayashi, H., Hara, K., & Fukuoka, A. (2012). Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol. Chemsuschem, 5(5), 920–926.CrossRefGoogle Scholar
  69. Yao, S. H., Jia, Y. F., & Zhao, S. L. (2012). Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon. Environmental Technology, 33(9), 983–988.CrossRefGoogle Scholar
  70. Zhang, W. D., Xu, B., & Jiang, L. C. (2010). Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry, 20(31), 6383–6391.CrossRefGoogle Scholar
  71. Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., … & Dionysiou, D. D. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials, 209, 271–277.Google Scholar
  72. Zhang, D., Wen, M., Zhang, S., Liu, P., Zhu, W., Li, G., et al. (2014a). Goldnanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Applied Catalysis, B: Environmental, 147, 610–616.CrossRefGoogle Scholar
  73. Zhang, Y. F., Qiu, L. G., Yuan, Y. P., Zhu, Y. J., Jiang, X., & Xiao, J. D. (2014b). Magnetic Fe3O4@ C/Cu and Fe3O4@ CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Applied Catalysis, B: Environmental, 144, 863–869.CrossRefGoogle Scholar
  74. Zhao, Q., Wang, L., Zhao, S., Wang, X., & Wang, S. (2011). High selective production of 5-hydroxymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel, 90(6), 2289–2293.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Bagheri
    • 1
  • Nurhidayatullaili Muhd Julkapli
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations