Skip to main content

Enhanced Photocatalytic Activity by Using Modification Activated Carbon

  • Chapter
  • First Online:
Nanocatalysts in Environmental Applications

Part of the book series: Green Energy and Technology ((GREEN))

  • 481 Accesses

Abstract

The core purpose of this chapter is to focus the developments of effective, safe, economic, and eco-friendly catalytic systems to convert lignocellulosic biomass to the activated carbon materials. The synthesized activated carbon can be further used as a support material in the photocatalysis applications. The drawbacks of activated carbon productions raised by energy assumption and product selectivity have uplifted to develop sustainable carbon for the synthesis process, where catalytic conversion is accounted. This catalytic conversion process through either homogeneous or heterogeneous approach conforming to mild condition provided bulk, nanostructure, and mesoporous carbon materials. These features of carbon nanomaterials are basic necessities for the efficient photocatalytic and low-energy systems. Because of the excellent oxidizing features, long-term stability, and cheapness, semiconductor nanostructures are utilized greatly in photocatalytic reactors. In practical, such conductors suffer from loss of photocatalytic activity and separation steps. To overcome such drawbacks, appropriate consideration has been specified to improve supported semiconductor nanocatalysts, and certain matrixes of carbon nanomaterials such as carbon nanofibers, carbon nanotubes, carbon microspheres, activated carbons, and carbon black have been lately considered and reported. Activated carbon has been reported as a potential catalyst support in the photocatalytic systems due to its ability to improve the interface charge transfer rate and lowers the holes and the electrons recombination rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama, G., Matsuda, R., Sato, H., Takata, M., & Kitagawa, S. (2011). Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Advanced Materials, 23(29), 3294–3297.

    Article  Google Scholar 

  • Amir, I., Nur, M., Julkapli, N. M., Bagheri, S., & Yousefi, A. T. (2015). Titania hybrid photocatalytic systems: Impact of adsorption and photocatalytic performance. Reviews in Inorganic Chemistry, 35(3), 151–178.

    Google Scholar 

  • Amir, M. N. I., Muhd Julkapli, N., & Hamid, S. B. A. (2017). Effective adsorption and photodegradation of methyl orange by Titania-chitosan supported glass plate photocatalysis. Materials Technology, 32(4), 256–264.

    Article  Google Scholar 

  • Andronic, L., Enesca, A., Cazan, C., & Visa, M. (2014). Titania–active carbon composites for wastewater photocatalysis. Journal of Sol–Gel Science and Technology, 71(3), 396–405.

    Article  Google Scholar 

  • Ao, Y., Xu, J., Fu, D., Ba, L., & Yuan, C. (2008). Deposition of anatase titania onto carbon encapsulated magnetite nanoparticles. Nanotechnology, 19(40), 405604.

    Article  Google Scholar 

  • Aruldoss, U., Kennedy, L. J., Vijaya, J. J., & Sekaran, G. (2011). Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. Journal of Colloid and Interface Science, 355(1), 204–209.

    Article  Google Scholar 

  • Ashik, U. P. M., Daud, W. W., & Abbas, H. F. (2017). Methane decomposition kinetics and reaction rate over Ni/SiO2 nanocatalyst produced through co-precipitation cum modified Stöber method. International Journal of Hydrogen Energy, 42(2), 938–952.

    Article  Google Scholar 

  • Azeez, A. M., Meier, D., Odermatt, J., & Willner, T. (2011). Effects of zeolites on volatile products of beech wood using analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 91(2), 296–302.

    Article  Google Scholar 

  • Babadi, A. A., Bagheri, S., & Hamid, S. B. A. (2016). Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosensors and Bioelectronics, 79, 850–860.

    Article  Google Scholar 

  • Bagheri, S., Shameli, K., & Abd Hamid, S. B. (2012). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol–Gel method. Journal of Chemistry, 2013.

    Google Scholar 

  • Chambon, F., Rataboul, F., Pinel, C., Cabiac, A., Guillon, E., & Essayem, N. (2011). Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis, B: Environmental, 105(1), 171–181.

    Article  Google Scholar 

  • Chen, N. Y. (1996). Shape selective catalysis in industrial applications (Vol. 65). CRC press.

    Google Scholar 

  • Cheng, M., Shi, T., Guan, H., Wang, S., Wang, X., & Jiang, Z. (2011). Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst. Applied Catalysis, B: Environmental, 107(1), 104–109.

    Article  Google Scholar 

  • dos Santos, J. B., da Silva, F. L., Altino, F. M. R. S., da Silva Moreira, T., Meneghetti, M. R., & Meneghetti, S. M. P. (2013). Cellulose conversion in the presence of catalysts based on Sn (IV). Catalysis Science and Technology, 3(3), 673–678.

    Article  Google Scholar 

  • Dreher, M., Johnson, B., Peterson, A. A., Nachtegaal, M., Wambach, J., & Vogel, F. (2013). Catalysis in supercritical water: pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. Journal of Catalysis, 301, 38–45.

    Article  Google Scholar 

  • Elangovan, S. V., Sivakumar, N., & Chandramohan, V. (2015). Magnesium doped zinc oxide nanocrystals for photo-catalytic applications. Journal of Materials Science: Materials in Electronics, 26(11), 8753–8759.

    Google Scholar 

  • Eliyas, A., Ljutzkanov, L., Stambolova, I., Blaskov, V., Vassilev, S., Razkazova-Velkova, E., et al. (2013). Visible light photocatalytic activity of Titania deposited on activated carbon. Open Chemistry, 11(3), 464–470.

    Article  Google Scholar 

  • Gao, Y., & Liu, H. (2005). Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Materials Chemistry and Physics, 92(2), 604–608.

    Article  Google Scholar 

  • Gondal, M. A., Li, C., Chang, X., Sikong, L., Yamani, Z. H., Zhou, Q., … & Lin Q. (2012). Facile preparation of magnetic C/Titania/Ni composites and their photocatalytic performance for removal of a dye from water under UV light irradiation. Journal of Environmental Science and Health, Part A, 47(4), 570–576.

    Google Scholar 

  • Heinze, T., & Gericke, M. (2014). Ionic liquids as solvents for homogeneous derivatization of cellulose: Challenges and opportunities. Production of Biofuels and Chemicals with Ionic Liquids (pp. 107–144). Netherlands: Springer.

    Chapter  Google Scholar 

  • Hu, L., Sun, Y., Lin, L., & Liu, S. (2012). 12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 47, 289–294.

    Article  Google Scholar 

  • Huang, Z. F., Zou, J. J., Pan, L., Wang, S., Zhang, X., & Wang, L. (2014). Synergetic promotion on photoactivity and stability of W18O49/TiO2hybrid. Applied Catalysis, B: Environmental, 147, 167–174.

    Article  Google Scholar 

  • Igarashi, K. (2013). Cellulases: Cooperative biomass breakdown. Nature Chemical Biology, 9(6), 350–351.

    Article  Google Scholar 

  • Johnson, J. T., & Panas, I. (2000). Water adsorption and hydrolysis on molecular transition metal oxides and oxyhydroxides. Inorganic Chemistry, 39(15), 3181–3191.

    Article  Google Scholar 

  • Jung, H. J., Hong, J. S., & Suh, J. K. (2013). A comparison of fenton oxidation and photocatalyst reaction efficiency for humic acid degradation. Journal of Industrial and Engineering Chemistry, 19(4), 1325–1330.

    Article  Google Scholar 

  • Khan, M., Jiang, P., Li, J., & Cao, W. (2014). Enhanced photoelectrochemical properties of Titania by codoping with tungsten and silver. Journal of Applied Physics, 115(15), 153103.

    Article  Google Scholar 

  • Koller, M., Dias, M. M. D. S., Rodríguez-Contreras, A., Kunaver, M., Žagar, E., Kržan, A., et al. (2015). Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate into polyhydroxyalkanoates. Materials, 8(9), 6543–6557.

    Article  Google Scholar 

  • Kuo, C. Y., Wu, C. H., & Chen, S. T. (2014). Decolorization of CI reactive Red 2 by UV/Titania/PAC and visible light/Titania/PAC systems. Desalination and Water Treatment, 52(4–6), 834–843.

    Article  Google Scholar 

  • Lee, H., Kim, C., Yang, S., Han, J. W., & Kim, J. (2012). Shape-controlled nanocrystals for catalytic applications. Catalysis Surveys from Asia, 16(1), 14–27.

    Article  Google Scholar 

  • Lee, J. Y., Lee, B. M., Jeun, J. P., & Kang, P. H. (2014). Pretreatment of kenaf core by combined electron beam irradiation and water steam for enhanced hydrolysis. Korean Chemical Engineering Research, 52(1), 113–118.

    Article  Google Scholar 

  • Li, W., & Liu, S. (2012). Bifunctional activated carbon with dual photocatalysis and adsorption capabilities for efficient phenol removal. Adsorption, 18(2), 67–74.

    Article  Google Scholar 

  • Li, H., Pan, L., Nie, C., Liu, Y., & Sun, Z. (2012). Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry, 22(31), 15556–15561.

    Article  Google Scholar 

  • Li, D., Ishikawa, C., Koike, M., Wang, L., Nakagawa, Y., & Tomishige, K. (2013). Production of renewable hydrogen by steam reforming of tar from biomass pyrolysis over supported Co catalysts. International Journal of Hydrogen Energy, 38(9), 3572–3581.

    Article  Google Scholar 

  • Li, H., Zhang, Q., Riisager, A., & Yang, S. (2015). Catalytic valorization of cellulose and cellobiose with nanoparticles. Current Nanoscience, 11(1), 1–14.

    Article  Google Scholar 

  • Liao, Z. H., Chen, J. J., Yao, K. F., Zhao, F. H., & Li, R. X. (2004). Progress of nanometer-TiO2 photocatalyst immobilization [J]. Journal of Inorganic Materials, 1, 002.

    Google Scholar 

  • Liu, M., Jia, S., Gong, Y., Song, C., & Guo, X. (2013). Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Industrial and Engineering Chemistry Research, 52(24), 8167–8173.

    Article  Google Scholar 

  • Liu, J., He, Y., Ma, X., Liu, G., Yao, Y., Liu, H., … & Wang, W. (2016). Catalytic pyrolysis of tar model compound with various bio-char catalysts to recycle char from biomass pyrolysis. BioResources, 11(2), 3752–3768.

    Google Scholar 

  • Louis, B., Vicente, A., Fernandez, C., & Valtchev, V. (2011). Crystal size-acid sites relationship study of nano-and micrometer-sized zeolite crystals. The Journal of Physical Chemistry C, 115(38), 18603–18610.

    Article  Google Scholar 

  • Mante, O. D., Agblevor, F. A., & McClung, R. (2013). A study on catalytic pyrolysis of biomass with Y-zeolite based FCC catalyst using response surface methodology. Fuel, 108, 451–464.

    Article  Google Scholar 

  • Masters, A. F., & Maschmeyer, T. (2011). Zeolites-from curiosity to cornerstone. Microporous and Mesoporous Materials, 142(2), 423–438.

    Article  Google Scholar 

  • McEvoy, J. G., Bilodeau, D. A., Cui, W., & Zhang, Z. (2013). Visible-light-driven inactivation of Escherichia coli K-12 using an Ag/AgCl–activated carbon composite photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 267, 25–34.

    Article  Google Scholar 

  • Nandiwale, K. Y., Galande, N. D., Thakur, P., Sawant, S. D., Zambre, V. P., & Bokade, V. V. (2014). One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustainable Chemistry and Engineering, 2(7), 1928–1932.

    Article  Google Scholar 

  • Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., … & Okano, T. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New England Journal of Medicine, 351(12), 1187–1196.

    Google Scholar 

  • Pamecha, K., Mehta, V., & Kabra, B. V. (2016). Photocatalytic degradation of commercial textile Azo Dye Reactive Blue 160 by heterogeneous photocatalysis. Advanced Applied Science and Research, 7, 95–101.

    Google Scholar 

  • Patil, S. K., & Lund, C. R. (2011). Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy and Fuels, 25(10), 4745–4755.

    Article  Google Scholar 

  • Poonjarernsilp, C., Sano, N., & Tamon, H. (2014). Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis, B: Environmental, 147, 726–732.

    Article  Google Scholar 

  • Quiñones, D. H., Rey, A., Álvarez, P. M., Beltrán, F. J., & Plucinski, P. K. (2014). Enhanced activity and reusability of TiO2 loaded magnetic activated carbon for solar photocatalytic ozonation. Applied Catalysis, B: Environmental, 144, 96–106.

    Article  Google Scholar 

  • Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289.

    Article  Google Scholar 

  • Shimomura, K., Dickson, L., & Walton, H. F. (1967). Separation of amines by ligand exchange: Part IV ligand exchange with chelating resins and cellulosic exchangers. Analytica Chimica Acta, 37, 102–111.

    Article  Google Scholar 

  • Sin, J. C., Lam, S. M., & Mohamed, A. R. (2011). Optimizing photocatalytic degradation of phenol by TiO2/GAC using response surface methodology. Korean Journal of Chemical Engineering, 28(1), 84–92.

    Article  Google Scholar 

  • Slimen, H., Houas, A., & Nogier, J. P. (2011). Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1), 13–21.

    Article  Google Scholar 

  • Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., & Hayashi, S. (2008). Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society, 130(38), 12787–12793.

    Article  Google Scholar 

  • Tong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis, A: General, 385(1), 1–13.

    Article  Google Scholar 

  • Tryba, B., Morawski, A. W., & Inagaki, M. (2003). Application of TiO2-mounted activated carbon to the removal of phenol from water. Applied Catalysis, B: Environmental, 41(4), 427–433.

    Article  Google Scholar 

  • Velo-Gala, I., López-Peñalver, J. J., Sánchez-Polo, M., & Rivera-Utrilla, J. (2013). Activated carbon as photocatalyst of reactions in aqueous phase. Applied Catalysis, B: Environmental, 142, 694–704.

    Article  Google Scholar 

  • Vuyyuru, K. R., & Strasser, P. (2012). Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 195(1), 144–154.

    Article  Google Scholar 

  • Wang, J., Fang, L., Lopez, D., & Tobias, H. (1993). Highly selective and sensitive amperometric biosensing of glucose at ruthenium-dispersed carbon paste enzyme electrodes. Analytical Letters, 26(9), 1819–1830.

    Article  Google Scholar 

  • Wang, Y., Li, X., Lu, G., Quan, X., & Chen, G. (2008). Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. The Journal of Physical Chemistry C, 112(19), 7332–7336.

    Article  Google Scholar 

  • Wang, H., Zhu, L., Peng, S., Peng, F., Yu, H., & Yang, J. (2012). High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renewable Energy, 37(1), 192–196.

    Article  Google Scholar 

  • Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N., et al. (2014). Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources, 9(4), 5988–6001.

    Article  Google Scholar 

  • Wei, Z., Li, Y., Thushara, D., Liu, Y., & Ren, Q. (2011). Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Goldchlorides in ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 363–370.

    Article  Google Scholar 

  • Weingarten, R., Kim, Y. T., Tompsett, G. A., Fernández, A., Han, K. S., Hagaman, E. W., … & Huber, G. W. (2013). Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. Journal of Catalysis, 304, 123–134.

    Google Scholar 

  • Williams, A., Jones, J. M., Ma, L., & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113–137.

    Article  Google Scholar 

  • Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic carbon-nanotube–Titania composites. Advanced Materials, 21(21), 2233–2239.

    Article  Google Scholar 

  • Xu, H. Y., Liu, W. C., Shi, J., Zhao, H., & Qi, S. Y. (2014). Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: Optimization using response surface method. Environmental Science and Pollution Research, 21(2), 1582–1591.

    Article  Google Scholar 

  • Yabushita, M., Kobayashi, H., & Fukuoka, A. (2014). Catalytic transformation of cellulose into platform chemicals. Applied Catalysis, B: Environmental, 145, 1–9.

    Article  Google Scholar 

  • Yang, B., & Bai, M. D. (2014). Preparation of NaInS2 with Hierarchical Nanostructure Toward Visible Light-Induced H2 Production. In Applied Mechanics and Materials (Vol. 448, pp. 2946–2949). Trans Tech Publications.

    Google Scholar 

  • Yang, P., Kobayashi, H., Hara, K., & Fukuoka, A. (2012). Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol. Chemsuschem, 5(5), 920–926.

    Article  Google Scholar 

  • Yao, S. H., Jia, Y. F., & Zhao, S. L. (2012). Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon. Environmental Technology, 33(9), 983–988.

    Article  Google Scholar 

  • Zhang, W. D., Xu, B., & Jiang, L. C. (2010). Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry, 20(31), 6383–6391.

    Article  Google Scholar 

  • Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., … & Dionysiou, D. D. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials, 209, 271–277.

    Google Scholar 

  • Zhang, D., Wen, M., Zhang, S., Liu, P., Zhu, W., Li, G., et al. (2014a). Goldnanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Applied Catalysis, B: Environmental, 147, 610–616.

    Article  Google Scholar 

  • Zhang, Y. F., Qiu, L. G., Yuan, Y. P., Zhu, Y. J., Jiang, X., & Xiao, J. D. (2014b). Magnetic Fe3O4@ C/Cu and Fe3O4@ CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Applied Catalysis, B: Environmental, 144, 863–869.

    Article  Google Scholar 

  • Zhao, Q., Wang, L., Zhao, S., Wang, X., & Wang, S. (2011). High selective production of 5-hydroxymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel, 90(6), 2289–2293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagheri, S., Muhd Julkapli, N. (2018). Enhanced Photocatalytic Activity by Using Modification Activated Carbon. In: Nanocatalysts in Environmental Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69557-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69557-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69556-3

  • Online ISBN: 978-3-319-69557-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics