Advertisement

Discovering Relational Phrases for Qualia Roles Through Open Information Extraction

  • Giovanni SiragusaEmail author
  • Valentina Leone
  • Luigi Di Caro
  • Claudio Schifanella
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)

Abstract

In Generative Lexicon [17], Pustejovsky defined the Qualia Structure which organizes the semantic meaning carried by nouns through four roles: formal, telic, agentive and constitutive. Despite their expressive power, to the best of our knowledge no actual NLP system uses qualia structures possibly due to the large effort needed to construct such knowledge bases. Some researchers have tried to circumvent this obstacle using lexico-syntactic patterns based on Hearst idea [11]. In this paper, we propose an Open Information Extraction method to automatically acquire a set of relational phrases from a large corpus, starting with a small set of nouns and their qualia elements. Our idea is that the relational phrases unveil the relations between the nouns and their qualia elements. We compared our method with Reverb [10], Ollie [18] and ClausIE [9] in terms of patterns quality and the relative qualia elements extraction.

Keywords

Generative Lexicon Qualia structure Open information extraction Template-patterns Word sense disambiguation Natural language processing 

References

  1. 1.
    Akbik, A., Löser, A.: Kraken: N-ary facts in open information extraction. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, pp. 52–56. Association for Computational Linguistics (2012)Google Scholar
  2. 2.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics (1998)Google Scholar
  3. 3.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. IJCAI 7, 2670–2676 (2007)Google Scholar
  4. 4.
    Bovi, C.D., Telesca, L., Navigli, R.: Large-scale information extraction from textual definitions through deep syntactic and semantic analysis. Trans. Assoc. Comput. Linguist. 3, 529–543 (2015)Google Scholar
  5. 5.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, vol. 5, p. 3 (2010)Google Scholar
  6. 6.
    Caselli, T., Rise, T., Russo, I.: From glosses to qualia: qualia extraction from senso comune. In: 6th International Conference on Generative Approaches to the Lexicon, p. 37 (2013)Google Scholar
  7. 7.
    Cimiano, P., Wenderoth, J.: Automatically learning qualia structures from the web. In: Proceedings of the ACL-SIGLEX Workshop on Deep Lexical Acquisition, pp. 28–37. Association for Computational Linguistics (2005)Google Scholar
  8. 8.
    Cimiano, P., Wenderoth, J.: Automatic acquisition of ranked qualia structures from the web. In: ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (2007)Google Scholar
  9. 9.
    Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)Google Scholar
  10. 10.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)Google Scholar
  11. 11.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics, vol. 2, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  12. 12.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  13. 13.
    Moro, A., Navigli, R.: Integrating syntactic and semantic analysis into the open information extraction paradigm. In: IJCAI (2013)Google Scholar
  14. 14.
    Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1135–1145. Association for Computational Linguistics (2012)Google Scholar
  15. 15.
    Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Oltramari, A., Vetere, G., Chiari, I., Jezek, E., Zanzotto, F.M., Nissim, M., Gangemi, A.: Senso comune: a collaborative knowledge resource for italian. In: Gurevych, I., Kim, J. (eds.) The Peoples Web Meets NLP. Theory and Applications of Natural Language Processing, pp. 45–67. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35085-6_2
  17. 17.
    Pustejovsky, J.: The generative lexicon. Comput. Linguist. 17(4), 409–441 (1991)Google Scholar
  18. 18.
    Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 523–534. Association for Computational Linguistics (2012)Google Scholar
  19. 19.
    Scozzafava, F., Raganato, A., Moro, A., Navigli, R.: Automatic identification and disambiguation of concepts and named entities in the multilingual wikipedia. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS, vol. 9336, pp. 357–366. Springer, Cham (2015). doi: 10.1007/978-3-319-24309-2_27 CrossRefGoogle Scholar
  20. 20.
    Speer, R., Havasi, C.: Representing general relational knowledge in conceptnet 5. In: LREC, pp. 3679–3686 (2012)Google Scholar
  21. 21.
    Wu, F., Weld, D.S.: Open information extraction using wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 118–127. Association for Computational Linguistics (2010)Google Scholar
  22. 22.
    Yamada, I., Baldwin, T.: Automatic discovery of telic and agentive roles from corpus data. In: PACLIC (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giovanni Siragusa
    • 1
    Email author
  • Valentina Leone
    • 1
  • Luigi Di Caro
    • 1
  • Claudio Schifanella
    • 1
  1. 1.Department of Computer ScienceUniversity of TurinTurinItaly

Personalised recommendations