ODERU: Optimisation of Semantic Service-Based Processes in Manufacturing

  • Luca MazzolaEmail author
  • Patrick KapahnkeEmail author
  • Matthias Klusch
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)


A new requirement for the manufacturing companies in Industry 4.0 is to be flexible with respect to changes in demands, requiring to react rapidly and efficiently on the production capacities. Coupling it with the affirmed Service-Oriented Architectures (SOA) induces a need for agile collaboration among supply chain partners, but also between different divisions or branches of the same company. To this end, we propose a novel pragmatic approach for automatically implementing service-based manufacturing processes at design and run-time, called ODERU. It provides an optimal plan for a business process model, relying on a set of semantic annotations and a configurable QoS-based constraint optimisation problem (COP) solving. The additional information encoding the optimal process service plan produced by means of pattern-based semantic composition and optimisation of non-functional aspects, are mapped back to the BPMN 2.0 standard formalism, through the use of extension elements, generating an enactable optimal plan. This paper presents the approach, the technical architecture and sketches two initial real-world industrial application in the manufacturing domains of metal press maintenance and automotive exhaust production.



This work was partially financed by the European Commission within the CREMA project, agreement 637066; and by the German Federal Ministry of Education and Research (BMBF) within the project INVERSIV.


  1. 1.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst. 16(2), 46–53 (2001)CrossRefGoogle Scholar
  2. 2.
    Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business process management: a vision towards using semantic web services for business process management. In: IEEE International Conference on e-Business Engineering (ICEBE) 2005, pp. 535–540. IEEE (2005)Google Scholar
  3. 3.
    Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically enhanced business process modeling notation. In: Semantic Technologies for Business and Information Systems Engineering: Concepts and Applications, pp. 259–275. IGI Global (2012)Google Scholar
  4. 4.
    Dimitrov, M., Simov, A., Stein, S., Konstantinov, M.: A BPMN based semantic business process modelling environment. In: Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management (SBPM-2007), vol. 251, pp. 1613–0073 (2007)Google Scholar
  5. 5.
    Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna, J., Weber, I., Zhou, X.: Semantic annotation and composition of business processes with maestro. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 772–776. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68234-9_56 CrossRefGoogle Scholar
  6. 6.
    Karastoyanova, D., van Lessen, T., Leymann, F., Ma, Z., Nitzche, J., Wetzstein, B.: Semantic business process management: applying ontologies in BPM. In: Handbook of Research on Business Process Modeling, pp. 299–317. IGI Global (2009)Google Scholar
  7. 7.
    Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic business process models. Distrib. Parallel Databases 27(3), 271–343 (2010)CrossRefGoogle Scholar
  8. 8.
    Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., Bernstein, A.: Semantic web service search: a brief survey. KI-Künstliche Intell. 30(2), 139–147 (2016)CrossRefGoogle Scholar
  9. 9.
    Pilioura, T., Tsalgatidou, A.: Unified publication and discovery of semantic web services. ACM Trans. Web 3(3), 11 (2009)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Huang, H., Yang, D., Zhang, H., Chao, H.C., Huang, Y.M.: Bring QoS to P2P-based semantic service discovery for the universal network. Pers. Ubiquit. Comput. 13(7), 471–477 (2009)CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated semantic web service discovery and composition framework. IEEE Trans. Serv. Comput. 9(4), 537–550 (2016)CrossRefGoogle Scholar
  12. 12.
    Klusch, M., Gerber, A.: Fast composition planning of OWL-S services and application. In: ECOWS 2006, 4th European Conference on Web Services, pp. 181–190. IEEE (2006)Google Scholar
  13. 13.
    Strunk, A.: QoS-aware service composition: a survey. In: 2010 IEEE 8th European Conference on Web Services (ECOWS), pp. 67–74. IEEE (2010)Google Scholar
  14. 14.
    Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y., Xiang, Y.: QoS-aware dynamic composition of web services using numerical temporal planning. IEEE Trans. Serv. Comput. 7(1), 18–31 (2014)CrossRefGoogle Scholar
  15. 15.
    Mazzola, L., Kapahnke, P., Vujic, M., Klusch, M.: CDM-Core: A manufacturing domain ontology in OWL2 for production and maintenance. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol. 2, KEOD, pp. 136–143 (2016)Google Scholar
  16. 16.
    Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., et al.: OWL-S: Semantic markup for web services. In: W3C Member Submission (2004)Google Scholar
  17. 17.
    Mazzola, L., Kapahnke, P., Waibel, P., Hochreiner, C., Klusch, M.: FCE4BPMN: On-demand QoS-based optimised process model execution in the cloud. In: Proceedings of the 23rd ICE/IEEE ITMC Conference. IEEE (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DFKI - German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations