Advertisement

Alignment: A Collaborative, System Aided, Interactive Ontology Matching Platform

  • Sotirios KarampatakisEmail author
  • Charalampos Bratsas
  • Ondřej Zamazal
  • Panagiotis Marios Filippidis
  • Ioannis Antoniou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)

Abstract

Ontology matching is a crucial problem in the world of Semantic Web and other distributed, open world applications. Diversity in tools, knowledge, habits, language, interests and usually level of detail may drive in heterogeneity. Thus, many automated applications have been developed, implementing a large variety of matching techniques and similarity measures, with impressive results. However, there are situations where this is not enough and there must be human decision in order to create a link. In this paper we present Alignment, a collaborative, system aided, interactive ontology matching platform. Alignment offers a simple GUI environment for matching two ontologies with aid of configurable similarity algorithms.

Keywords

Linked data Ontology matching SKOS Thesauri 

Notes

Acknowledgments

This work has been supported by the OpenBudgets.eu Horizon 2020 project (Grant Agreement 645833).

References

  1. 1.
    Beckett, D.: The design and implementation of the Redland RDF application framework. Comput. Netw. 39(5), 577–588 (2002)CrossRefGoogle Scholar
  2. 2.
    Cordasco, G., De Donato, R., Malandrino, D., Palmieri, G., Petta, A., Pirozzi, D., Santangelo, G., Scarano, V., Serra, L., Spagnuolo, C., Vicidomini, L.: Engaging citizens with a social platform for open data. In: Proceedings of the 18th Annual International Conference on Digital Government Research, DGO 2017, pp. 242–249. ACM (2017). doi: 10.1145/3085228.3085302
  3. 3.
    Cyganiak, R., Bizer, C.: D2R Server: A Semantic Web Front-end to Existing Relational Databases. XML Tage, pp. 2–4 (2006)Google Scholar
  4. 4.
    Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary. W3C Recommendation, January 2014 (2013)Google Scholar
  5. 5.
    Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.: User validation in ontology alignment. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 200–217. Springer, Cham (2016). doi: 10.1007/978-3-319-46523-4_13 CrossRefGoogle Scholar
  6. 6.
    Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30475-3_48 CrossRefGoogle Scholar
  7. 7.
    Filippidis, P.M., Karampatakis, S., Ioannidis, L., Mynarz, J., Svátek, V., Bratsas, C.: Towards budget comparative analysis: the need for fiscal codelists as linked data. In: SEMANTiCS (2016)Google Scholar
  8. 8.
    Filippidis, P.M., Karampatakis, S., Koupidis, K., Ioannidis, L., Bratsas, C.: The code lists case: identifying and linking the key parts of fiscal datasets. In: 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), pp. 165–170. IEEE (2016). doi: 10.1109/SMAP.2016.7753404
  9. 9.
    Geiger, R.S., Ribes, D.: The work of sustaining order in Wikipedia. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, CSCW 2010 pp. 117–126 (2010). doi: 10.1145/1718918.1718941
  10. 10.
    Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G., Lohmann, S.: VoCol: an integrated environment to support version-controlled vocabulary development. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS, vol. 10024, pp. 303–319. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_20 CrossRefGoogle Scholar
  11. 11.
    Mynarz, J., Svátek, V., Karampatakis, S., Klímek, J., Bratsas, C.: Modeling fiscal data with the Data Cube Vocabulary, September 2016. doi: 10.5281/zenodo.168588
  12. 12.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013). doi: 10.1109/TKDE.2011.253 CrossRefGoogle Scholar
  13. 13.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk a link discovery framework for the web of data. In: Proceedings of the 2nd Linked Data on the Web Workshop (2009). doi: 10.1111/j.1467-9744.2007.00872.x

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sotirios Karampatakis
    • 1
    • 2
    Email author
  • Charalampos Bratsas
    • 1
    • 2
  • Ondřej Zamazal
    • 3
  • Panagiotis Marios Filippidis
    • 1
    • 2
  • Ioannis Antoniou
    • 1
    • 2
  1. 1.Open Knowledge GreeceThessalonikiGreece
  2. 2.School of MathematicsArtistotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of Information and Knowledge EngineeringUniversity of Economics, PraguePragueCzech Republic

Personalised recommendations