Advertisement

Ephedra: Efficiently Combining RDF Data and Services Using SPARQL Federation

  • Andriy NikolovEmail author
  • Peter Haase
  • Johannes Trame
  • Artem Kozlov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)

Abstract

Knowledge graph management use cases often require addressing hybrid information needs that involve multitude of data sources, multitude of data modalities (e.g., structured, keyword, geospatial search), and availability of computation services (e.g., machine learning and graph analytics algorithms). Although SPARQL queries provide a convenient way of expressing data requests over RDF knowledge graphs, the level of support for hybrid information needs is limited: existing query engines usually focus on retrieving RDF data and only support a set of hard-coded built-in services. In this paper we describe representative use cases of metaphacts in the cultural heritage and pharmacy domains and the hybrid information needs arising in them. To address these needs, we present Ephedra: a SPARQL federation engine aimed at processing hybrid queries. Ephedra provides a flexible declarative mechanism for including hybrid services into a SPARQL federation and implements a number of static and runtime query optimization techniques for improving the hybrid SPARQL queries performance. We validate Ephedra in the use case scenarios and discuss practical implications of hybrid query processing.

Notes

Acknowledgements

This work has been supported by the Eurostars project DIESEL (E!9367) and by the German BMWI Project GEISER (project no. 01MD16014).

References

  1. 1.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  2. 2.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)CrossRefGoogle Scholar
  3. 3.
    Usbeck, R., Röder, M., Haase, P., Kozlov, A., Saleem, M., Ngomo, A.-C.N.: Requirements to modern semantic search engine. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS, vol. 649, pp. 328–343. Springer, Cham (2016). doi: 10.1007/978-3-319-45880-9_25 CrossRefGoogle Scholar
  4. 4.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM TODS 34(3), 16:1–16:45 (2009). http://dblp.uni-trier.de/rec/bibtex/journals/tods/PerezAG09
  5. 5.
    Kaminski, M., Kostylev, E.V., Grau, B.C.: Semantics and expressive power of subqueries and aggregates in SPARQL 1.1. In: WWW 2016, pp. 227–238 (2016)Google Scholar
  6. 6.
    Magliacane, S., Bozzon, A., Della Valle, E.: Efficient execution of Top-K SPARQL queries. In: Cudré-Mauroux, P., Heflin, J., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 344–360. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35176-1_22 CrossRefGoogle Scholar
  7. 7.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_38 CrossRefGoogle Scholar
  8. 8.
    Nikolov, A., Schwarte, A., Hütter, C.: FedSearch: efficiently combining structured queries and full-text search in a SPARQL federation. In: Alani, H., Kagal, L., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 427–443. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_27 CrossRefGoogle Scholar
  9. 9.
    Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in database systems. ACM Trans. Database Syst. 35(1), 1–47 (2008)CrossRefGoogle Scholar
  10. 10.
    Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting void descriptions. In: COLD2011, at ISWC 2011, Bonn, Germany (2011)Google Scholar
  11. 11.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_2 CrossRefGoogle Scholar
  12. 12.
    Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., et al. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Cham (2014). doi: 10.1007/978-3-319-07443-6_13 CrossRefGoogle Scholar
  13. 13.
    Stringer, B., Meroño-Peñuela, A., Abeln, S., van Harmelen, F., Heringa, J.: SCRY: extending SPARQL with custom data processing methods for the life sciences. In: SWAT4LS (2016)Google Scholar
  14. 14.
    Dolby, J., Fokoue, A., Muro, M.R., Srinivas, K., Sun, W.: Extending SPARQL for data analytic tasks. In: Groth, P., Simperl, E., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 437–452. Springer, Cham (2016). doi: 10.1007/978-3-319-46547-0_36 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andriy Nikolov
    • 1
    Email author
  • Peter Haase
    • 1
  • Johannes Trame
    • 1
  • Artem Kozlov
    • 1
  1. 1.Metaphacts GmbHWalldorfGermany

Personalised recommendations