Skip to main content

Compound Issues of Global Warming on the High and Low Islands of the Tropical Pacific

  • Chapter
  • First Online:
The Geography, Nature and History of the Tropical Pacific and its Islands

Part of the book series: World Regional Geography Book Series ((WRGBS))

  • 846 Accesses

Abstract

The evidence for climate change and global warming, and their relationship to greenhouse gases is briefly reviewed. The terrestrial realm of Pacific high islands is described with particular emphasis on New Guinea along with the combined impacts of natural resource extraction and climate change. The high islands of Hawaii serve as additional examples. Low islands are often limited by water for drinking and agriculture. This resource is more severely strained on highly populated islands where there are often insufficient amounts of it, as well as increased levels of contamination. Rising sea levels exacerbate the problem of limited water resources, especially on low islands, as does increasing frequencies of El Niño and La Niña cycles. The Solomon Islands in the western Pacific are identified as a rising sea-level hotspot due to their proximity to the Pacific Warm Pool. The effect of warming water on tuna resources and their migration patterns are described. Coral reef bleaching and its frequency as a global phenomenon are presented. Coral reefs everywhere have experienced deadly levels of warm and acidified water that threaten one of the most spectacular and diverse ecosystems on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prism, SPC International (2016) https://prism.spc.int/regional-data-and-tools/population-statistics/169-pacific-island-populations

  2. Hansen MC, Potapov PV et al (2013) High-resolution global maps of 21st century forest cover change. Science 432:850–853

    Article  Google Scholar 

  3. Mockler SB (1995) Water vapor in the climate system. Am Geophys Union. http://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html

  4. Zimov SA, Schuur EA, Chapin FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  Google Scholar 

  5. Edwards CR, Trancik JE (2014) Climate impacts of energy technologies depend on emissions timing. Nat Clim Chang 4:347–352

    Article  Google Scholar 

  6. Anthony KW, Daanen R et al (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat Geosci 9:679–682

    Article  Google Scholar 

  7. Portmann RW, Daniel JS, Ravishankara AR (2012) Stratospheric ozone depletion due to nitrous oxide: influence of other gases. Phil Trans Roy Soc B 367:1256–1264

    Article  Google Scholar 

  8. Adams J, Maslin M, Thomas E (1999) Sudden climate transitions during the quaternary. Progr Phys Geogr 23:1–36

    Article  Google Scholar 

  9. Hansen JE, Sato M (2012) Paleoclimate implications for human-made climate change. In: Berger A, Mesinger F, Sidjaki S (eds) Climate change: implications for paleoclimate and regional aspects. Springer, Vienna, pp 21–48

    Chapter  Google Scholar 

  10. Ogburn SP (2013) Ice-free Arctic in the Pliocene, last time CO2 levels above 400 ppm. Nature Magazine May 10, 2013. https://www.scientificamerican.com/article/ice-free-arctic-in-pliocene-last-time-co2-levels-above-400ppm/

  11. Raymo ME, Mitrovica JX et al (2011) Departures from eustasy in Pliocene sea-level records. Nat Geosci 4:328–332

    Article  Google Scholar 

  12. Nunn PD (2007) Climate, environment and society in the Pacific during the last millennium. Elsevier, Oxford

    Book  Google Scholar 

  13. Mann ME, Zhang Z et al (2009) Global signatures and dynamical origins of the little ice age and the medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  14. Comiso J (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193

    Article  Google Scholar 

  15. Rosen J (2017) After the ice goes. Nature 542:152–154

    Article  Google Scholar 

  16. Zwally HJ, Li J et al (2015) Mass gains of the Antarctic ice sheet exceed losses. J Glaciol 61:1019–1036

    Article  Google Scholar 

  17. Rintoul SR, Silvano A et al (2016) Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci Adv 2:e1601610. https://doi.org/10.1126/sciadv.1601610

    Article  Google Scholar 

  18. Zemp M, Gartner-Roer I et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  19. Sweet W, Park J et al (2014) Sea-level rise and nuisance flood frequency changes around the United States. NOAA Technical Report NOS CO-OPS 073

    Google Scholar 

  20. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266

    Google Scholar 

  21. Wdowinski S, Bray R et al (2016) Increasing flooding hazard in coastal communities due to rise in sea level: case study of Miami Beach. Ocean Coast Manag 126:1–8

    Article  Google Scholar 

  22. Climate Change Impacts in the United States (2014) National climate assessment. U.S. Global Change Research, Washington, DC. http://nca2014.globalchange.gov/highlights/overview/overview

  23. Goldberg W (2016) Atolls of the world: revisiting the original checklist. Atoll Res Bull #610

    Google Scholar 

  24. Clements JF (2000) Birds of the world: a checklist. Cornell University Press, Ithaca

    Google Scholar 

  25. Sherman PL, Ash J et al (2009) Forest conversion and degradation in Papua New Guinea 1972–2002. Biotropica 41:379–390

    Article  Google Scholar 

  26. Nelson PN, Gabriel J et al (2014) Oil palm and deforestation in Papua New Guinea. Conserv Lett 7:188–195

    Article  Google Scholar 

  27. Tolia DH, Petterson MG (2005) The Gold Ridge Mine, Guadalcanal, Solomon Islands’ first gold mine: a case study in stakeholder consultation. Geol Soc Spec Pub 250:149–159

    Article  Google Scholar 

  28. Banks G (2013) Mining. In: Rappaport M (ed) The Pacific islands: environment and society. University of Hawaii Press, Honolulu, pp 379–391

    Google Scholar 

  29. Kirsch S (2008) Social relations and the green critique of capitalism in Melanesia. Am Anthropol 110:288–298

    Article  Google Scholar 

  30. Papua New Guinea Climate variability, extremes and change in the Western Tropical Pacific: new science and updated country reports 2014. http://www.pacificclimatechangescience.org/wp-content/uploads/2014/07/PACCSAP_CountryReports2014_WEB_140710.pdf

  31. Corely RHV, Tinker PBH (2016) The oil palm, 5th edn. Wiley Blackwell, Hoboken

    Google Scholar 

  32. Lang ALS, Omena M et al (2015) Climate change in Papua New Guinea: impact on disease dynamics. Papua New Guinea. Med J 58:1–10

    Google Scholar 

  33. Leong J-A, Marra JJ et al (2014) Hawai’i and U.S. affiliated Pacific islands. Climate change in the United States, ch. 23. In: Melillo JM, Richmond TC, Yohe GW (eds) U.S. Global Change Research Program, pp 537–556. http://nca2014.globalchange.gov/report/regions/hawaii-and-pacific-islands#intro-section-2

    Google Scholar 

  34. Liao W, Atkinson CT et al (2017) Mitigating future avian malaria threats to Hawaiian forest birds from climate change. PLoS One 12(1):e0168880. https://doi.org/10.1371/journal.pone.0168880

    Article  Google Scholar 

  35. Benning TL, Pointe L et al (2002) Interactions of climate change with biological invasions and land use in Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. Proc Natl Acad Sci USA 99:14246–14249

    Article  Google Scholar 

  36. Atkinson C (2005) Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds. https://pubs.usgs.gov/fs/2005/3151/report.pdf

  37. http://www.botany.hawaii.edu/basch/uhnpscesu/pdfs/NatHistGuideAS09op.pdf

  38. Burns WCG (2002) Pacific island developing country water resources and climate change. Ch. 5. In: Gleick P (ed) The world’s water: 2002–2003 the biennial report on freshwater resources. The Pacific Institute, Oakland, pp 113–131

    Google Scholar 

  39. White I, Falkland T et al (2008) Safe water for people in low, small Island Pacific Nations: the rural-urban dilemma. Development (Cambridge) 51:282–287

    Google Scholar 

  40. Woodroffe CD (2008) Reef-island topography and the vulnerability of atolls to sea-level rise. Glob Planet Chang 62:77–96

    Article  Google Scholar 

  41. Web AP, Kench PS (2010) The dynamic response of reef islands to sea-level rise: evidence from multi-decadal analysis of island change in the Central Pacific. Glob Planet Chang 72:234–246

    Article  Google Scholar 

  42. Kench PS, Thompson D et al (2015) Coral islands defy sea-level rise over the past century: records from a Central Pacific atoll. Geology 43:515–518

    Article  Google Scholar 

  43. Biribo N, Woodroffe C (2013) Historical area and shoreline change of reef islands around Tarawa, Kiribati. Sustain Sci 8:345–362

    Article  Google Scholar 

  44. Duvat V (2013) Coastal protection structures on Tarawa Atoll, Republic of Kiribati. Sustain Sci 8:363–379

    Article  Google Scholar 

  45. Impact of climate change, the low islands, Tarawa Atoll, Kiribati (2000) In: Bettencourt S, Warrick R (eds) Cities, sea and storms. Managing resources in Pacific Island economies, vol 4. The World Bank, Washington, DC, p 19–26. http://siteresources.worldbank.org/INTPACIFICISLANDS/Resources/4-VolumeIV+Full.pdf

  46. Storlazzi CD, Edwin PL, Berkowitz E, Berkowitz P (2015) Many atolls may be uninhabitable within decades due to climate change. Sci Rep 5:14546

    Google Scholar 

  47. White I, Falkland T et al (2007) Climatic and human influences on groundwater in low atolls. Vadose Zone J 6:581–590

    Article  Google Scholar 

  48. Ford M (2012) Shoreline changes on an urban atoll in the central Pacific Ocean: Majuro Atoll, Marshall Islands. J Coast Res 28:11–22

    Article  Google Scholar 

  49. http://www.washingtonpost.com/sf/national/2015/11/27/a-ground-zero-forgotten/

  50. Palanisamy H, Meyssignac B et al (2015) Is anthropogenic sea-level fingerprint already detectable in the Pacific Ocean? Environ Res Lett 10:084024. https://doi.org/10.1088/1748-9326/10/8/084024

  51. Weller E, Min S-K et al (2016) Human-caused Indo-Pacific warm pool expansion. Sci Adv 2(7):e1501719. https://doi.org/10.1126/sciadv.1501719

    Article  Google Scholar 

  52. Albert S, Leon JX et al (2016) Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands. Environ Res Lett 11:054011. https://doi.org/10.1088/1748-9326/11/5/054011

    Article  Google Scholar 

  53. Jokiel PL (2004) Temperature stress and coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 401–425

    Chapter  Google Scholar 

  54. Glynn PW (1990) Coral mortality and disturbances to coral reefs in the eastern Pacific. Elsevier Oceanogr Ser 52:55–126

    Article  Google Scholar 

  55. Sheppard RC (2003) Predicted recurrence of mass coral mortality in the Indian Ocean. Nature 425:294–297

    Article  Google Scholar 

  56. Wilkinson C (2000) Status of coral reefs of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  57. http://www.noaa.gov/media-release/el-ni-o-prolongs-longest-global-coral-bleaching-event

  58. https://coralreefwatch.noaa.gov/satellite/analyses_guidance/global_coral_bleaching_20-17_status.php

  59. Biello D (2007) Coral reefs losing ground throughout the Pacific. Sci Am. August 2007

    Google Scholar 

  60. Hughes TP, Kerry JT et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  Google Scholar 

  61. Bruno JF, Selig ER (2007) Regional extent of coral cover in the Indo-Pacific: timing, extent and regional comparisons. PLoS One 2(8):e711. https://doi.org/10.1371/journal.pone.0000711

    Article  Google Scholar 

  62. Burke L, Reytar K et al (2011) Reefs at risk revisited. World Resources Institute, Washington, DC. http://www.wri.org/sites/default/files/pdf/reefs_at_risk_revisited_executive_summary.pdf

    Google Scholar 

  63. Mangubhai S, Erdmann MV et al (2012) Papuan Bird’s Head Seascape: emerging threats and challenges in the global center of marine biodiversity. Mar Pollut Bull 64:2279–2295

    Article  Google Scholar 

  64. Maclean J, Mallery L (2014) State of the Coral Triangle: Papua New Guinea. Asian Development Bank. https://www.adb.org/sites/default/files/publication/42413/state-coral-triangle-papua-new-guinea.pdf

  65. Ellison J (2001) Possible impacts of sea-level rise on south Pacific mangroves. In: Noye BJ, Grzechnik MP (eds) Sea-level changes and their effects, Singapore, World Scientific Publishing, pp 49–72

    Google Scholar 

  66. Butler JRA, Skewes T et al (2014) Stakeholder perceptions of ecosystem service declines in Milne Bay, Papua New Guinea: is human population a more critical driver than climate change? Mar Policy 46:1–13

    Article  Google Scholar 

  67. Drew JA, Amatangelo KL, Hufbauer RA (2015) Quantifying the human impacts on Papua New Guinea reef fish communities across space and time. PLoS One 10(10):e0140682. https://doi.org/10.1371/journal.pone.0140682

    Article  Google Scholar 

  68. Worm B, Branch TA (2012) The future of fish. Trends Ecol Evol 27:594–599

    Article  Google Scholar 

  69. Doulman DJ, Wright A (1983) Recent developments in Papua New Guinea’s tuna fishery. Mar Fish Rev 45:47–59

    Google Scholar 

  70. http://www.fisheries.gov.pg/FisheriesIndustry/TunaFishery/tabid/104/Default.aspx

  71. Bailey M, Sumaila UR, Martell SJD (2013) Can cooperative management of tuna fisheries in the Western Pacific solve the growth overfishing problem? Strat Behav Environ 3:31–66

    Article  Google Scholar 

  72. Hampton J (2010) Tuna fisheries status and management in the western and central Pacific Ocean. http://awsassets.panda.org/downloads/background_paper___status_and_management_of_tuna_in_the_wcpfc.Pdf

  73. Havice E, Reed K (2012) Fishing for development? Tuna resource access and industrial change in Papua New Guinea. J Agrar Chang 12:413–435

    Google Scholar 

  74. Wood LJ (2007) MPA Global: a database of the world’s marine protected areas. http://www.mpaglobal.org/index.php

  75. Greene A, Smith SE et al (2009) Designing a resilient network of marine protected areas for Kimbe Bay, Papua New Guinea. Oryx Int J Conserv 43:488–498

    Google Scholar 

  76. http://www.reuters.com/article/us-climatechange-elnino-tuna-idUSKBN0TM0F320151203

  77. Bell JD, Ganachaud A et al (2013) Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat Clim Chang 3:591–599

    Google Scholar 

  78. Obura D, Donner SD et al (2016) Phoenix Islands Protected Area climate change vulnerability assessment and management, report to the New England. Aquarium, Boston. http://www.phoenixislands.org/pdf/PIPA-CC-scoping-study-Jan-18-2016.pdf

    Google Scholar 

  79. Cai W, Borlace S et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116. https://doi.org/10.1038/nclimate2100

    Article  Google Scholar 

  80. Ateweberhan M, Feary DA et al (2013) Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications. Mar Poll Bull 74:526–539

    Article  Google Scholar 

  81. Hughes TP, Barnes ML et al (2017) Coral reefs in the anthropocene. Nature 546:82–90

    Article  Google Scholar 

  82. Fitt WK, Gates RD et al (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  83. Howells EJ, Beltran VH et al (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change 2.2(2012):116–120. https://doi.org/10.1038/NCLIMATE1330

    Google Scholar 

  84. Carilli J, Donner SD et al (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7(3):e34418. https://doi.org/10.1371/journal.pone.0034418

    Article  Google Scholar 

  85. Carilli JE, Norris RD et al (2009) Local stressors reduce coral resilience to bleaching. PLoS One 4(7):e6324. https://doi.org/10.1371/journal.pone.0006324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldberg, W.M. (2018). Compound Issues of Global Warming on the High and Low Islands of the Tropical Pacific. In: The Geography, Nature and History of the Tropical Pacific and its Islands. World Regional Geography Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-69532-7_8

Download citation

Publish with us

Policies and ethics