Skip to main content

Image and Video Analysis

  • Chapter
  • First Online:
Smart Camera Design

Abstract

The human visual system is much more than a camera—most of the visual system is dedicated to analyzing the imagery captured by our eyes. We perceive the world both as scenic imagery and as our understanding of those scenes—people, objects, and places. Digital cameras have allowed us to move photography beyond imaging to image understanding. A camera does not need to take a picture—it can report on what it sees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, 1999, pp. 1150–1157 vol.2. doi: https://doi.org/10.1109/ICCV.1999.790410

  2. David G. Lowe, “Distinctive image features from scale-invariant keypoints,” in International Journal of Computer Vision, vol. 60, no. 2, 2004, pp. 91–110.

    Google Scholar 

  3. David G. Lowe, Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image, U. S. Patent 6,711,293, Mar 23, 2004.

    Google Scholar 

  4. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded Up Robust Features,” in ECCV 2006: European Conference on Computer Vision, LCNS, vol. 3951, Springer, 2006, pp. 404–417.

    Google Scholar 

  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A Comparison of Affine Region Detectors,” in International Journal of Computer Vision, vol. 65, no. 1, Nov 1, 2005, pp. 43–72, doi: https://doi.org/10.1007/s11263-005-3848-x

  6. Martin A. Fischler and Robert C. Bolles. 1981. “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6 (June 1981), pp. 381–395. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/358669.358692

  7. Arnaud Doucet and Adam M. Johansen, “A tutorial on particle filtering and smoothing: fifteen years later,” version 1.1, Dec 2008.

    Google Scholar 

  8. Lee, Ann B., Kim S. Pedersen, and David Bryant Mumford, “The nonlinear statistics of high-contrast patches in natural images,” in International Journal of Computer Vision, vol. 54, nos. 1–3, 2003, pp. 83–103.

    Google Scholar 

  9. M. Zontak and M. Irani, “Internal statistics of a single natural image,” CVPR 2011, Providence, RI, 2011, pp. 977–984. doi: https://doi.org/10.1109/CVPR.2011.5995401

  10. Parzen, Emanuel. “On Estimation of a Probability Density Function and Mode.” in The Annals of Mathematical Statistics, vol. 33, no. 3, 1962, pp. 1065–1076. www.jstor.org/stable/2237880.

  11. L. Itti, C. Koch and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, Nov 1998. doi: https://doi.org/10.1109/34.730558

  12. X. Hou and L. Zhang, “Saliency Detection: A Spectral Residual Approach,” in 2007 I.E. Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. doi: https://doi.org/10.1109/CVPR.2007.383267

  13. T. Liu, Zejian Yuan, Jian Sun, Jindong Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung Shum, “Learning to Detect a Salient Object,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp. 353–367, Feb. 2011. doi: https://doi.org/10.1109/TPAMI.2010.70

  14. Wayne Wolf, “Key frame selection by motion analysis,” in Proceedings, ICASSP ‘96, IEEE Press, 1996, pp. 1240–1243.

    Google Scholar 

  15. M. Flickner et al., “Query by image and video content: the QBIC system,” in Computer, vol. 28, no. 9, pp. 23–32, Sep 1995. doi: https://doi.org/10.1109/2.410146

  16. J. Sivic and A. Zisserman, “Video Google: a text retrieval approach to object matching in videos,” in Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, pp. 1470–1477, vol. 2. doi: https://doi.org/10.1109/ICCV.2003.1238663

  17. J. Philbin, O. Chum, M. Isard, J. Sivic and A. Zisserman, “Object retrieval with large vocabularies and fast spatial matching,” in 2007 I.E. Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. doi: https://doi.org/10.1109/CVPR.2007.383172

  18. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. 2003. “Face recognition: A literature survey,” in ACM Computing Surveys, vol, 35, no. 4 (Dec 2003), pp. 399–458. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/954339.954342

  19. T. K. Leung, M. C. Burl and P. Perona, “Finding faces in cluttered scenes using random labeled graph matching,” in Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, 1995, pp. 637-644. doi: https://doi.org/10.1109/ICCV.1995.466878

  20. Ying Zhu, S. Schwartz and M. Orchard, “Fast face detection using subspace discriminant wavelet features,” Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head Island, SC, 2000, pp. 636–642 vol. 1. doi: https://doi.org/10.1109/CVPR.2000.855879

  21. M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proceedings. 1991 I.E. Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, 1991, pp. 586–591. doi: https://doi.org/10.1109/CVPR.1991.139758

  22. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proceedings. 1999 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, 1999, pp. 252, vol. 2. doi: https://doi.org/10.1109/CVPR.1999.784637

  23. C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–757, Aug 2000. doi: https://doi.org/10.1109/34.868677

  24. J. Schlessman, M. Lodato, B. Ozer and W. Wolf, “Heterogeneous MPSoC Architectures for Embedded Computer Vision,” in 2007 I.E. International Conference on Multimedia and Expo, Beijing, 2007, pp. 1870–1873. doi: https://doi.org/10.1109/ICME.2007.4285039

  25. Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object detection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1778–1792, Nov 2005. doi: https://doi.org/10.1109/TPAMI.2005.213

  26. D. Reid, “An algorithm for tracking multiple targets,” in IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 843–854, Dec 1979. doi: https://doi.org/10.1109/TAC.1979.1102177

  27. T. Fortmann, Y. Bar-Shalom and M. Scheffe, “Sonar tracking of multiple targets using joint probabilistic data association,” in IEEE Journal of Oceanic Engineering, vol. 8, no. 3, pp. 173–184, Jul 1983. doi: https://doi.org/10.1109/JOE.1983.1145560

  28. A. D. Jepson, D. J. Fleet and T. F. El-Maraghi, “Robust online appearance models for visual tracking,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1296–1311, Oct 2003. doi: https://doi.org/10.1109/TPAMI.2003.1233903

  29. D. Comaniciu, V. Ramesh and P. Meer, “Kernel-based object tracking,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564–577, May 2003. doi: https://doi.org/10.1109/TPAMI.2003.1195991

  30. S.K. Zhou, R. Chellappa, and B. Moghaddam. “Visual tracking and recognition using appearance-adaptive models for particle filters,” in IEEE Transactions on Image Processing, vol. 13, no. 11, pp. 1491–1506, 2004.

    Google Scholar 

  31. C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: real-time tracking of the human body,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, Jul 1997. doi: https://doi.org/10.1109/34.598236

  32. Wayne Wolf, Burak Ozer, and Tiehan Lv, “Smart cameras as embedded systems,” in IEEE Computer, vol. 35, no. 9, Sept 2002, pp. 48–53.

    Google Scholar 

  33. M. Brand and V. Kettnaker, “Discovery and segmentation of activities in video,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 844–851, Aug 2000. doi: https://doi.org/10.1109/34.868685

  34. K. Yamaguchi, T. Kato and Y. Ninomiya, “Vehicle Ego-Motion Estimation and Moving Object Detection using a Monocular Camera,” in 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006, pp. 610–613. doi: https://doi.org/10.1109/ICPR.2006.1165

  35. Jinman Kang, I. Cohen, G. Medioni and Chang Yuan, “Detection and tracking of moving objects from a moving platform in presence of strong parallax,” in Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005, pp. 10–17, vol. 1. doi: https://doi.org/10.1109/ICCV.2005.72

  36. Chung-Ching Lin, Detecting and Tracking Moving Objects From a Moving Platform, Ph.D. dissertation, Georgia Institute of Technology, April 2012.

    Google Scholar 

  37. Chung-Ching Lin and Marilyn Wolf, “Belief Propagation for Detecting Moving Objects from a Moving Platform”, in International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV), IEEE, 2010.

    Google Scholar 

  38. W. H. Widen, “Smart Cameras and the Right to Privacy,” in Proceedings of the IEEE, vol. 96, no. 10, pp. 1688–1697, Oct 2008. doi: https://doi.org/10.1109/JPROC.2008.928764

  39. Chang Hong Lin, Marilyn Wolf, Xenefon Koutsoukos, Sandeep Neema, and Janos Sztipanovits. 2010. “System and software architectures of distributed smart cameras,” in ACM Transactions on Embedded Computing Systems, vol. 9, no. 4, Article 38 (Apr 2010), pp. 30. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/1721695.1721704

  40. B. Rinner and W. Wolf, “An Introduction to Distributed Smart Cameras,” in Proceedings of the IEEE, vol. 96, no. 10, pp. 1565–1575, Oct 2008. doi: https://doi.org/10.1109/JPROC.2008.928742

  41. Dhanya Devarajan, Richard J. Radke, and Haeyong Chung. 2006. “Distributed metric calibration of ad hoc camera networks,” in ACM Transactions on Sensor Networks, vol. 2, no. 3, Aug 2006, pp. 380–403. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/1167935.1167939

  42. Senem Velipasalar and Wayne H. Wolf, “Frame-level temporal calibration of video sequences from unsynchronized cameras,” Machine Vision and Applications Journal, Jan 2008, doi: https://doi.org/10.1007/s00138-008-0122-6

  43. S. Velipasalar and W. Wolf, “Multiple object tracking and occlusion handling by information exchange between uncalibrated cameras,” in IEEE International Conference on Image Processing 2005, 2005, pp. II-418–21. doi: https://doi.org/10.1109/ICIP.2005.1530081

  44. S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple cameras with overlapping fields of view,” in IEEE Transactions on PAMI, vol. 25, no. 10, pp. 1355–1360, Oct 2003.

    Google Scholar 

  45. S. Velipasalar, J. Schlessman, C. Y. Chen, W. Wolf and J. P. Singh, “SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface,” in 2006 I.E. International Conference on Multimedia and Expo, Toronto, Ont., 2006, pp. 277–280. doi: https://doi.org/10.1109/ICME.2006.262452

  46. E. Kokiopoulou and P. Frossard, “Distributed classification of multiple observations by consensus,” in 2010 I.E. International Conference on Image Processing, Hong Kong, 2010, pp. 2697–2700. doi: https://doi.org/10.1109/ICIP.2010.5652022

  47. T. H. Chang and S. Gong, “Tracking multiple people with a multi-camera system,” in Proceedings 2001 I.E. Workshop on Multi-Object Tracking, Vancouver, BC, 2001, pp. 19–26. doi: https://doi.org/10.1109/MOT.2001.937977

  48. O. Javed, K. Shafique and M. Shah, “Appearance modeling for tracking in multiple non-overlapping cameras,” in 2005 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, pp. 26–33 vol. 2. doi: https://doi.org/10.1109/CVPR.2005.71

  49. Honggab Kim, Romberg, J.; Wolf, W., “Multi-camera tracking on a graph using Markov chain Monte Carlo,” in Third ACM/IEEE International Conference on Distributed Smart Cameras, 2009. ICDSC 2009, vol., no., pp. 1–8, Aug 30 2009–Sept 2 2009.

    Google Scholar 

  50. V. Kettnaker and R. Zabih, “Bayesian multi-camera surveillance,” in Proceedings. 1999 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, 1999, pp. 259, vol. 2. doi: https://doi.org/10.1109/CVPR.1999.784638

  51. Songhwai Oh, Stuart Russell, and Shankar Sastry, “Markov chain Monte Carlo data association for general multiple-target tracking problems, in 43 rd IEEE Conference on Decision and Control, IEEE, 2004, TuB08.5

    Google Scholar 

  52. Wojciech Zajdel and Ben J. A. Kröse, “A sequential Bayesian algorithm for surveillance with nonoverlapping cameras,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 19, pp. 977 (2005). doi: https://doi.org/10.1142/S0218001405004423

  53. N. Gheissari, T. B. Sebastian and R. Hartley, “Person Reidentification Using Spatiotemporal Appearance,” in 2006 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, pp. 1528–1535. doi: https://doi.org/10.1109/CVPR.2006.223

  54. W. S. Zheng, S. Gong and T. Xiang, “Reidentification by Relative Distance Comparison,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 3, pp. 653–668, Mar 2013 doi: https://doi.org/10.1109/TPAMI.2012.138

  55. Bethke B., Valenti M., How J. (2007) Cooperative Vision Based Estimation and Tracking Using Multiple UAVs. In: Pardalos P.M., Murphey R., Grundel D., Hirsch M.J. (eds) Advances in Cooperative Control and Optimization. Lecture Notes in Control and Information Sciences, vol. 369. Springer, Berlin, Heidelberg

    Google Scholar 

  56. Christophe Bobda and Senem Velipasalar, eds., Distributed Embedded Smart Cameras: Architectures, Design, and Applications, Springer, 2014.

    Google Scholar 

  57. Bir Bhanu, Chinya V. Ravishankar, Amit K. Roy-Chowdhury, Hamid Aghajan, and Demetri Terzopoulos, eds., Distributed Video Sensor Networks, Springer, 2011.

    Google Scholar 

  58. J. Huang, A. B. Lee and D. Mumford, “Statistics of range image,” Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000, Hilton Head Island, SC, 2000, pp. 324-331 vol. 1.

    Google Scholar 

  59. Honggab Kim and Marilyn Wolf, “Distributed tracking in a large-scale network of smart cameras,” in Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, ACM Press, 2010, pp. 8-16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolf, M. (2018). Image and Video Analysis. In: Smart Camera Design. Springer, Cham. https://doi.org/10.1007/978-3-319-69523-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69523-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69522-8

  • Online ISBN: 978-3-319-69523-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics