Skip to main content

MPM Based Simulation for Various Solid Deformation

  • Conference paper
  • First Online:
Book cover Next Generation Computer Animation Techniques (AniNex 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10582))

  • 1232 Accesses

Abstract

Solid materials are responsible for many interesting phenomena. There are various types of them such as deformable objects and granular materials. In this paper, we present an MPM based framework to simulate the wide range of solid materials. In this framework, solid mechanics is based on the elastoplastic model, where we use von Mises criterion for deformable objects, and the Drucker-Prager model with non-associated plastic flow rules for granular materials. As a result, we can simulate different kinds of deformation of deformable objects and sloping failure for granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, Y., Wu, Q., Shi, C., Liu, Q.: Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure. Geotechnique 66, 670–680 (2016)

    Article  Google Scholar 

  2. Becker, M., Ihmsen, M., Teschner, M.: Corotated sph for deformable solids. In: Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH 2009), pp. 27–34. Eurographics Association, Aire-la-Ville (2009). http://dx.doi.org/10.2312EG/DL/conf/EG2009/nph/027-034

  3. Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticplastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32(12), 1537–1570 (2008). http://dx.doi.org/10.1002/nag.688

    Article  MATH  Google Scholar 

  4. Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: Reddy, B.D. (ed.) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol. 11, pp. 287–296. Springer, Dordrecht (2008). doi:10.1007/978-1-4020-9090-5_26

    Chapter  Google Scholar 

  5. Daviet, G., Bertails-Descoubes, F.: A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35(4), 102:1–102:13 (2016). http://doi.acm.org/10.1145/2897824.2925877

    Article  Google Scholar 

  6. Gray, J., Monaghan, J., Swift, R.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190(49), 6641–6662 (2001). http://www.sciencedirect.com/science/article/pii/S0045782501002547

    Article  MATH  Google Scholar 

  7. Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. 34(4), 51:1–51:10 (2015). http://doi.acm.org/10.1145/2766996

    Article  MATH  Google Scholar 

  8. Klár, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Jiang, C., Teran, J.: Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35(4), 103:1–103:12 (2016). http://doi.acm.org/10.1145/2897824.2925906

    Article  Google Scholar 

  9. Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. In: Trease, H.E., Fritts, M.F., Crowley, W.P. (eds.) Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Lecture Notes in Physics, vol. 395, pp. 248–257. Springer, Heidelberg (1991). doi:10.1007/3-540-54960-9_58

    Chapter  Google Scholar 

  10. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2004), pp. 141–151. Eurographics Association, Aire-la-Ville (2004). http://dx.doi.org/10.1145/1028523.1028542

  11. Solenthaler, B., Schlfli, J., Pajarola, R.: A unified particle model for fluidsolid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007). http://dx.doi.org/10.1002/cav.162

    Article  Google Scholar 

  12. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 102:1–102:10 (2013). http://doi.acm.org/10.1145/2461912.2461948

    Article  MATH  Google Scholar 

  13. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33(4), 138:1–138:11 (2014). http://doi.acm.org/10.1145/2601097.2601176

    Article  Google Scholar 

  14. Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1), 179–196 (1994). http://www.sciencedirect.com/science/article/pii/0045782594901120

    Article  MATH  MathSciNet  Google Scholar 

  15. Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79:1–79:11 (2016). http://doi.acm.org/10.1145/2897824.2925897

    Google Scholar 

Download references

Acknowledgements

This work is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n\(^{\circ }\) [612627].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Yang, T., Chang, J., Hu, SM. (2017). MPM Based Simulation for Various Solid Deformation. In: Chang, J., Zhang, J., Magnenat Thalmann, N., Hu, SM., Tong, R., Wang, W. (eds) Next Generation Computer Animation Techniques. AniNex 2017. Lecture Notes in Computer Science(), vol 10582. Springer, Cham. https://doi.org/10.1007/978-3-319-69487-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69487-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69486-3

  • Online ISBN: 978-3-319-69487-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics