Advertisement

MPM Based Simulation for Various Solid Deformation

  • Yuntao JiangEmail author
  • Tao Yang
  • Jian Chang
  • Shi-Min Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10582)

Abstract

Solid materials are responsible for many interesting phenomena. There are various types of them such as deformable objects and granular materials. In this paper, we present an MPM based framework to simulate the wide range of solid materials. In this framework, solid mechanics is based on the elastoplastic model, where we use von Mises criterion for deformable objects, and the Drucker-Prager model with non-associated plastic flow rules for granular materials. As a result, we can simulate different kinds of deformation of deformable objects and sloping failure for granular materials.

Keywords

Solid simulation MPM Elastoplastic model 

Notes

Acknowledgements

This work is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n\(^{\circ }\) [612627].

References

  1. 1.
    An, Y., Wu, Q., Shi, C., Liu, Q.: Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure. Geotechnique 66, 670–680 (2016)CrossRefGoogle Scholar
  2. 2.
    Becker, M., Ihmsen, M., Teschner, M.: Corotated sph for deformable solids. In: Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH 2009), pp. 27–34. Eurographics Association, Aire-la-Ville (2009). http://dx.doi.org/10.2312EG/DL/conf/EG2009/nph/027-034
  3. 3.
    Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticplastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32(12), 1537–1570 (2008). http://dx.doi.org/10.1002/nag.688 CrossRefzbMATHGoogle Scholar
  4. 4.
    Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: Reddy, B.D. (ed.) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol. 11, pp. 287–296. Springer, Dordrecht (2008). doi: 10.1007/978-1-4020-9090-5_26 CrossRefGoogle Scholar
  5. 5.
    Daviet, G., Bertails-Descoubes, F.: A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35(4), 102:1–102:13 (2016). http://doi.acm.org/10.1145/2897824.2925877 CrossRefGoogle Scholar
  6. 6.
    Gray, J., Monaghan, J., Swift, R.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190(49), 6641–6662 (2001). http://www.sciencedirect.com/science/article/pii/S0045782501002547 CrossRefzbMATHGoogle Scholar
  7. 7.
    Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. 34(4), 51:1–51:10 (2015). http://doi.acm.org/10.1145/2766996 CrossRefzbMATHGoogle Scholar
  8. 8.
    Klár, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Jiang, C., Teran, J.: Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35(4), 103:1–103:12 (2016). http://doi.acm.org/10.1145/2897824.2925906 CrossRefGoogle Scholar
  9. 9.
    Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. In: Trease, H.E., Fritts, M.F., Crowley, W.P. (eds.) Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Lecture Notes in Physics, vol. 395, pp. 248–257. Springer, Heidelberg (1991). doi: 10.1007/3-540-54960-9_58 CrossRefGoogle Scholar
  10. 10.
    Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2004), pp. 141–151. Eurographics Association, Aire-la-Ville (2004). http://dx.doi.org/10.1145/1028523.1028542
  11. 11.
    Solenthaler, B., Schlfli, J., Pajarola, R.: A unified particle model for fluidsolid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007). http://dx.doi.org/10.1002/cav.162 CrossRefGoogle Scholar
  12. 12.
    Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 102:1–102:10 (2013). http://doi.acm.org/10.1145/2461912.2461948 CrossRefzbMATHGoogle Scholar
  13. 13.
    Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33(4), 138:1–138:11 (2014). http://doi.acm.org/10.1145/2601097.2601176 CrossRefGoogle Scholar
  14. 14.
    Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1), 179–196 (1994). http://www.sciencedirect.com/science/article/pii/0045782594901120 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79:1–79:11 (2016). http://doi.acm.org/10.1145/2897824.2925897 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuntao Jiang
    • 1
    Email author
  • Tao Yang
    • 1
  • Jian Chang
    • 2
  • Shi-Min Hu
    • 1
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Bournemouth UniversityPooleUK

Personalised recommendations