Advertisement

A VR-Based Crane Training System for Railway Accident Rescues

  • Jianxi Xu
  • Zhao TangEmail author
  • Xihui Wei
  • Yinyu Nie
  • Xiaolin Yuan
  • Zong Ma
  • Jian J. Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10582)

Abstract

The railway crane is frequently used in railway accident rescues. However, it is generally impractical to train crane operators widely in real accident sites considering the costs and human safety. A VR-based crane training system for railway accident rescues is proposed in this paper. The training system reconstructs the railway accident scenes by integrating geographical environments, head-on collision scenarios between two high-speed trains and the railway crane kinematics models. Crane operators can interact with the virtual accident environment through some VR devices and gain the valuable experience of railway accident rescues. Results of a field test show that the VR-based crane training system for railway accident rescues can provide a safe, low-cost, efficient and user-friendly platform for crane operators.

Keywords

Railway crane Training system Accident rescue Head-on collision VR devices 

Notes

Acknowledgements

We would like to thank Shujie Deng for proofreading this manuscript. The financial support of the National Science Foundation of China (No. 51405402, NO. 51475394), the Independent Research Project of the State Key Laboratory of Traction Power (No. 2015TPL_T06), and the Fundamental Research Funds for the Central Universities (No. 2682016CX128) is gratefully acknowledged.

References

  1. 1.
    Jin, G., Nakayama, S.: Virtual reality game for safety education. In: International Conference on Audio, Language and Image Processing, pp. 95–100. IEEE Press, Shanghai (2014). doi: 10.1109/ICALIP.2014.7009764
  2. 2.
    Kaufmann, H., Schmalstieg, D., Wagner, M.: Construct3D: a virtual reality application for mathematics and geometry education. Educ. Inform. Technol. 5(4), 263–276 (2000). doi: 10.1023/A:1012049406877 CrossRefGoogle Scholar
  3. 3.
    Yellowlees, P.M., Cook, J.N.: Education about hallucinations using an internet virtual reality system: a qualitative survey. Acad. Psychiatry 30(6), 534 (2006). doi: 10.1176/appi.ap.30.6.534 CrossRefGoogle Scholar
  4. 4.
    Robb, R.: Virtual reality in medicine: a personal perspective. J. Vis. 5(4), 317–326 (2002). doi: 10.1007/BF03182346 CrossRefGoogle Scholar
  5. 5.
    Akay, M., Marsh, A.: Virtual reality in medicine and biology. Medicine 319(12), 1–31 (2001). https://doi.org/10.1016/S0167-739X(98)00023-5 Google Scholar
  6. 6.
    Reitmayr, G., Schmalstieg, D.: An open software architecture for virtual reality interaction. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 47–54 (2001). doi. 10.1145/505008.505018
  7. 7.
    Steinicke, F., Ropinski, T., Hinrichs, K.: A generic virtual reality software system’s architecture and application. In: International Conference on Augmented Tele-Existence, pp. 220–227. ACM, New York (2005). doi. 10.1145/1152399.1152440
  8. 8.
    Moshell, M.: Three views of virtual reality: virtual environments in the US military. Computer 26(2), 81–82 (1993). doi: 10.1109/2.192003 CrossRefGoogle Scholar
  9. 9.
    Lele, A.: Virtual reality and its military utility. J. Ambient Intell. Humaniz. Comput. 4(1), 17–26 (2013). doi: 10.1007/s12652-011-0052-4 CrossRefGoogle Scholar
  10. 10.
    Dong, H., Xu, G.: An expert system for bridge crane training system based on virtual reality. In: International Conference on Artificial Intelligence and Computational Intelligence, pp. 30–33. IEEE Press, Sanya (2010). doi: 10.1109/AICI.2010.247
  11. 11.
    Lin, S., Li, T., Zhang, R.: Research on motion simulation of railway rescue crane based virtual reality technology. In: International Conference on Automatic Control and Artificial Intelligence, pp. 30–33. IEEE Press, Sanya (2012). doi: 10.1049/cp.2012.1325
  12. 12.
    Sang, Y., Zhu, Y., Zhao, H., Tang, M.: Study on an interactive truck crane simulation platform based on virtual reality technology. Int. J. Distance Educ. Technol. 14(2), 64–78 (2016). doi: 10.1109/CAR.2010.5456842 CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Chen, D., Dong, H., Wang, B.: Research on operating simulation system for tower crane based on virtual reality. In: Zu, Q., Vargas-Vera, M., Hu, B. (eds.) ICPCA/SWS 2013. LNCS, vol. 8351, pp. 593–601. Springer, Cham (2014). doi: 10.1007/978-3-319-09265-2_60 Google Scholar
  14. 14.
    Moore, M., Wilhelms, J.: Collision detected and response for computer animation. In: Proceedings of the 15th Annual Conference on Computer Graphics, pp. 289–298. ACM, New York (1988). http://doi.acm.org/10.1145/378456.378528
  15. 15.
    Hung, W.H., Kang, S.C.: Configurable model for real-time crane erection visualization. Adv. Eng. Softw. 65(11), 1–11 (2013). https://doi.org/10.1016/j.advengsoft.2013.04.013 CrossRefGoogle Scholar
  16. 16.
    Dempsey, P.: The teardown: HTC Vive VR headset. Eng. Technol. 11(7), 80–81 (2016). doi: 10.1049/et.2016.0731 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jianxi Xu
    • 1
  • Zhao Tang
    • 1
    Email author
  • Xihui Wei
    • 1
  • Yinyu Nie
    • 2
  • Xiaolin Yuan
    • 1
  • Zong Ma
    • 1
  • Jian J. Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Traction PowerSouthwest Jiaotong UniversityChengduChina
  2. 2.National Centre for Computer AnimationBournemouth UniversityPooleUK

Personalised recommendations