Sunken Relief Generation from a Single Image

  • Liying Yang
  • Tingting Li
  • Meili WangEmail author
  • Shihui Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10582)


Sunken relief is an art form whereby the depicted shapes are sunk into a given flat plane with a shallow overall depth. In this paper, we propose a sunken relief generation algorithm based on a single image. Our method starts from a single image. First, we smoothen the image with morphological operations such as opening and closing operations and extract the feature lines by comparing the values of adjacent pixels. Then we apply unsharp masking to sharpen the feature lines. After that, we focus on local information enhancement and smoothing to obtain an image that with little burrs and jaggies. Differential operations are necessary to produce the perceptive relief effect. Finally, we construct the sunken relief surface by triangularization, by which two-dimensional information is transformed into a three-dimensional model. The results demonstrate that our method is simple and efficient.


Sunken relief Unsharp masking (USM) Triangularization 



This work was funded by the National Natural Science Foundation of China (61402374). We thank all reviewers for editing the English of this manuscript.


  1. 1.
    Cignoni, P., Montani, C., Scopigno, R.: Computer-assisted generation of bas-and high-reliefs. J. Graph. Tools 2(3), 15–28 (1997)CrossRefGoogle Scholar
  2. 2.
    Song, W., Belyaev, A., Seidel, H.P.: Automatic generation of bas-reliefs from 3D shapes. In: IEEE International Conference on Shape Modeling and Applications, pp. 211–214. IEEE Computer Society (2007)Google Scholar
  3. 3.
    Wu, J., Martin, R., Rosin, P., Sun, X., Langbein, F., Lai, Y., Marshall, A., Liu, Y.: Making bas-reliefs from photographs of human faces. Comput. Aided Des. 45(3), 671–682 (2013)CrossRefGoogle Scholar
  4. 4.
    Arpa, S., Süsstrunk, S., Hersch, R.: High relief from 3D scenes. Comput. Graph. Forum 34(2), 253–263 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, M., Sun, Y., Zhang, H., Qian, K., Chang, J., He, D.: Digital relief generation from 3D models. Chin. J. Mech. Eng. 29(6), 1128–1133 (2016)CrossRefGoogle Scholar
  6. 6.
    Liu, S., Xu, X.: LI, B., Zhang, L.: An algorithm for generating line-engraving relief. J. Chin Comput. Syst. 32(10), 2088–2091 (2011)Google Scholar
  7. 7.
    Wang, M., Kerber, J., Chang, J., Zhang, J.: Relief stylization from 3D models using featured lines. In: Spring Conference on Computer Graphics, pp. 37–42. ACM (2011)Google Scholar
  8. 8.
    Wang, M., Chang, J., Kerber, J., Zhang, J.: A framework for digital sunken relief generation based on 3D geometric models. Vis. Comput. 28(11), 1127–1137 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Zhou, Y., Li, X., Zhang, L.: Line-based sunken relief generation from a 3D mesh. Graph. Models 75(6), 297–304 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, M., Chang, J., Pan, J., Zhang, J.: Image-based bas-relief generation with gradient operation. In: Proceedings of the 11th IASTED International Conference Computer Graphics and Imaging, Innsbruck, Austria, pp. 33–38. Acta Press (2010)Google Scholar
  11. 11.
    Zeng, Q., Martin, R., Wang, L., Quinn, J., Sun, Y., Tu, C.: Region-based bas-relief generation from a single image. Graph. Models 76(3), 140–151 (2014)CrossRefGoogle Scholar
  12. 12.
    Koenderink, J.: What does the occluding contour tell us about solid shape? Perception 13(3), 321 (1984)CrossRefGoogle Scholar
  13. 13.
    Raskar, R.: Hardware support for non-photorealistic rendering. In: ACM SIGGRAPH, eurographics Workshop on Graphics Hardware, pp. 41–46. Association for Computing Machinery (2001)Google Scholar
  14. 14.
    Decarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph. 22(3), 848–855 (2003)CrossRefGoogle Scholar
  15. 15.
    Zhang, L., He, Y., Xie, X., Chen, W.: Laplacian lines for real-time shape illustration. In: 2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Boston, MA, United states, pp. 129–136. Association for Computing Machinery (2009)Google Scholar
  16. 16.
    Lee, Y., Markosian, L., Lee, S., Hughes, J.: Line drawings via abstracted shading. ACM Trans. Graph. 26(3), 18 (2007)CrossRefGoogle Scholar
  17. 17.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. ACM Siggraph Comput. Graph. 24(4), 197–206 (1990)CrossRefGoogle Scholar
  18. 18.
    Liang, J., Gong, L.: An improved method of USM processing on color image. In: 2nd China Academic Conference on Printing and Packaging, Beijing, China, pp. 168–171. Trans Tech Publications (2012)Google Scholar
  19. 19.
    Mitra, S., Li, H., Lin, I., Yu, T.: A new class of nonlinear filters for image enhancement. In: Proceeding of the 1991 International Conference on Acoustics, Speech, and Signal, Toronto, Ontario, Canada, pp. 2525–2528. IEEE (1991)Google Scholar
  20. 20.
    Ramponi, G.: A cubic unsharp masking technique for contrast enhancement. Sig. Process. 67(2), 211–222 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, Y., Park, S.: A study of convex/concave edges and edge-enhancing operators based on the Laplacian. IEEE Trans. Circ. Syst. 37(7), 940–946 (1990)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Deng, G.: A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Liying Yang
    • 1
  • Tingting Li
    • 1
  • Meili Wang
    • 1
    Email author
  • Shihui Guo
    • 2
  1. 1.Northwest A&F UniversityXianyangChina
  2. 2.Xiamen UniversityXiamenChina

Personalised recommendations