Recent Progress of Computational Fluid Dynamics Modeling of Animal and Human Swimming for Computer Animation

  • Tom MatkoEmail author
  • Jian Chang
  • Zhidong Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10582)


A literature review is conducted on the Computational Fluid Dynamics (CFD) modeling of swimming. The scope is animated films and games, sports science, animal biological research, bio-inspired submersible vehicle design and robotic design. There are CFD swimming studies on animals (eel, clownfish, turtle, manta, frog, whale, dolphin, shark, trout, sunfish, boxfish, octopus, squid, jellyfish, lamprey) and humans (crawl, butterfly, backstroke, breaststroke, dolphin kick, glide). A benefit is the ability to visualize the physics-based effects of a swimmer’s motion, using key-frame or motion capture animation. Physics-based animation can also be used as a training tool for sports scientists in swimming, water polo and diving. Surface swimming is complex and considers the water surface shape, splashes, bubbles, foam, bubble coalescence, vortex shedding, solid-fluid coupling and body deformation. Only the Navier-Stokes fluid flow equations can capture these features. Two-way solid-fluid coupling between the swimmer and the water is modeled to be able to propel the swimmer forwards in the water. Swimmers are often modeled using articulated rigid bodies, thus avoiding the complexity of deformable body modeling. There is interesting potential research, including the effects of hydrodynamic flow conditions on a swimmer, and the use of motion capture data. The predominant approach for swimming uses grid-based fluid methods for better accuracy. Emerging particle and hybrid-based fluid methods are being increasingly used in swimming for better 3D fluid visualization of the motion of the water surface, droplets, bubbles and foam.


Computational Fluid Dynamics Fluid simulation Physics-based Animation Swimming Animal Human Splashes Bubbles Solid-fluid coupling Articulated rigid body Particle-based fluid method Hybrid-based fluid method 



Research supported through funding and training by The Centre for Digital Entertainment (CDE) and Engineering and Physical Sciences Research Council (EPSRC). The research leading to these results has been partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° [612627].


  1. 1.
    Lentine, M., Tómas Grétarsson, J.T., Schroeder, C., Robinson-Mosher, A., Fedkiw, R.: Creature control in a fluid environment. IEEE Trans. Vis. Comput. Graph. 17(5), 682–693 (2011)CrossRefGoogle Scholar
  2. 2.
    Furukawa, M., Watanabe, M., Fukumoto, A., Suzuki, I., Yamamoto, M.: Swimming Animats with Musculoskeletal structure (2012)Google Scholar
  3. 3.
    Yang, P.F., Laszlo, J., Singh, K.: Layered dynamic control for interactive character swimming. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 39–47. Eurographics Association (2004)Google Scholar
  4. 4.
    Nakashima, M., Nakano, T.: Simulation analysis of an octopus-inspired propulsion mechanism. J. Aero Aqua Bio-mechanisms. 4(1), 49–55 (2015)CrossRefGoogle Scholar
  5. 5.
    Nakashima, M.: Modeling and simulation of human swimming. J. Aero Aqua Bio-mechanisms 1(1), 11–17 (2010)CrossRefGoogle Scholar
  6. 6.
    Rudolf, D., Mould, D.: Animating Jellyfish through Observational Models of Motion. Department of Computer Science (2004)Google Scholar
  7. 7.
    Malik, S., Morris, N., Yang, P.: Physically-based Animation of Humanoid Swimming (2002)Google Scholar
  8. 8.
    Si, W., Lee, S.-H., Sifakis, E., Terzopoulos, D.: Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34(1), 1–15 (2014)CrossRefGoogle Scholar
  9. 9.
    Tan, J., Yuting, G., Turk, G., Liu, K.: Articulated swimming creatures. ACM Trans. Graph. 30(4), 1 (2011)CrossRefGoogle Scholar
  10. 10.
    Von Loebbecke, A., Mittal, R., Russell, M., Hahn, J.: A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomech. 8(1), 60–77 (2009)CrossRefGoogle Scholar
  11. 11.
    Cohen, R., Cleary, P.: Computational studies of the locomotion of dolphins and sharks using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 22–25. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Cohen, R.C.Z., Cleary, P.W., Mason, B.: Simulations of human swimming using Smoothed Particle Hydrodynamics. In: 7th International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia (2009)Google Scholar
  13. 13.
    Cohen, R.C.Z., Cleary, P.W., Mason, B.: Improving understanding of human swimming using Smoothed Particle Hydrodynamics. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). IFMBE Proceedings, vol. 31, pp. 174–177. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Lazunin, V., Savchenko, V.: Artificial jellyfish: evolutionary optimization of swimming. In: The 20th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. EuroGraphics Proceedings of WSCG (2012)Google Scholar
  15. 15.
    Kwatra, N., Wojtan, C., Carlson, M., Essa, I., Mucha, P.J., Turk, G.: Fluid simulation with articulated bodies. IEEE Trans. Vis. Comput. Graph. 16(1), 70–80 (2010)CrossRefGoogle Scholar
  16. 16.
    Truong, D.-T., Chow, Y.-Y., Fang, A.C.: Visualization and simulation of near-body hydrodynamics using the Semi-lagrangian fluid simulation method. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 219–228. IEEE (2007)Google Scholar
  17. 17.
    Mihalef, V., Kadioglu, S., Sussman, M., Metaxas, D., Hurmusiadis, V.: Interaction of two-phase flow with animated models. Graph. Models 70(3), 33–42 (2008)CrossRefGoogle Scholar
  18. 18.
    Sato, Y., Hino, T.: CFD simulation of flows around a swimmer in a prone glide position. Suiei Suichu Undo Kagaku. 13(1), 1–9 (2010)CrossRefGoogle Scholar
  19. 19.
    Mantha, V.R., Marinho, D.A., Silva, A.J., Rouboa, A.I.: The 3D CFD study of gliding swimmer on passive hydrodynamics drag. Braz. Arch. Biol. Technol. 57(2), 302–308 (2014)CrossRefGoogle Scholar
  20. 20.
    Banks, J., James, M.C., Turnock, S.R., Hudson, D.A.: An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations (2014)Google Scholar
  21. 21.
    Fan, J., Zhang, W., Zhu, Y., Zhao, J.: CFD-based self-propulsion simulation for frog swimming. J. Mech. Med. Biol. 14(6), 1440012-1–1440012-10 (2014)Google Scholar
  22. 22.
    Dudley, P.N., Bonazza, R., Jones, T.T., Wyneken, J., Porter, W.P.: Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics. PLoS ONE 9(10), e110701 (2014)Google Scholar
  23. 23.
    Dong, H., Bozkurttas, M., Mittal, R., Madden, P., Lauder, G.V.: Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Van Wassenbergh, S., Van Manen, K., Marcroft, T.A., Alfaro, M.E., Stamhuis, E.J.: Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 12, 1–11 (2014)Google Scholar
  25. 25.
    Tytell, E.D., Hsu, C.Y., Williams, T.L., Cohen, A.H., Fauci, L.J.: Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Nat. Acad. Sci. 107(46), 19832–19837 (2010)CrossRefGoogle Scholar
  26. 26.
    Von Loebbecke, A., Mittal, R., Fish, F., Russell, M.: Propulsive efficiency of the underwater dolphin kick in humans. J. Biomech. Eng. 131(5), 054504-1–054504-4 (2009)Google Scholar
  27. 27.
    Cohen, R.C.Z., Cleary, P.W., Mason, B.R.: Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum. Mov. Sci. 31(3), 604–619 (2012)CrossRefGoogle Scholar
  28. 28.
    Sato, Y., Hino, T.: a computational fluid dynamics analysis of hydrodynamic force acting on a swimmer’s hand in a swimming competition. J. Sports Sci. Med. 12(4), 679 (2013)Google Scholar
  29. 29.
    Hochstein, S., Pacholak, S., Brücker, C., Blickhan, R.: Experimental and Numerical Investigation of the Unsteady Flow around a Human Underwater Undulating Swimmer. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 293–308. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28302-4_18
  30. 30.
    Novais, M., Silva, A., Mantha, V., Ramos, R., Rouboa, A., Vilas-Boas, J., Luís, S., Marinho, D.: The effect of depth on drag during the streamlined glide: a three-dimensional CFD analysis. J. Hum. Kinet. 33, 55–62 (2012)CrossRefGoogle Scholar
  31. 31.
    Marinho, D., Barbosa, T., Rouboa, A., Silva, A.: The hydrodynamic study of the swimming gliding: a two-dimensional computational fluid dynamics (CFD) analysis. J. Hum. Kinet. 29, 49–57 (2011)CrossRefGoogle Scholar
  32. 32.
    Silva, A.J., Rouboa, A., Moreira, A., Reis, V.M., Alves, F., Vilas-Boas, J.P., Marinho, D.A.: Analysis of drafting effects in swimming using computational fluid dynamics. J. Sports Sci. Med. 7(1), 60 (2008)Google Scholar
  33. 33.
    Popa, C.V., Zaidi, H., Arfaoui, A., Polidori, G., Taiar, R., Fohanno, S.: Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD. Acta Bioeng. Biomech. 13(1), 3–11 (2011)Google Scholar
  34. 34.
    Popa, C.V., Arfaoui, A., Fohanno, S., Taïar, R., Polidori, G.: Influence of a postural change of the swimmer’s head in hydrodynamic performances using 3D CFD. Comput. Methods Biomech. Biomed. Eng. 17(4), 344–351 (2014)CrossRefGoogle Scholar
  35. 35.
    Arfaoui, A., Popa, C.V., Taïar, R., Polidori, G., Fohanno, S.: Numerical streamline patterns at swimmer’s surface using RANS equations. J. Appl. Biomech. 28(3), 279–283 (2012)CrossRefGoogle Scholar
  36. 36.
    Zaïdi, H., Fohanno, S., Taïar, R., Polidori, G.: Turbulence model choice for the calculation of drag forces when using the CFD method. J. Biomech. 43(3), 405–411 (2010)CrossRefGoogle Scholar
  37. 37.
    Zaïdi, H., Taïar, R., Fohanno, S., Polidori, G.: An evaluation of turbulence models in CFD simulations of underwater swimming. Ser. Biomech. 24, 1–5 (2009)Google Scholar
  38. 38.
    Weber, P.W., Howle, L.E., Murray, M.M., Fish, F.E.: Lift and drag performance of odontocete cetacean flippers. J. Exp. Biol. 212(14), 2149–2158 (2009)CrossRefGoogle Scholar
  39. 39.
    Pavlov, V., Riedeberger, D., Rist, U., Siebert, U.: Analysis of the relation between skin morphology and local flow conditions for a fast-swimming dolphin. In: Tropea, C., Bleckmann, H. (eds.) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 119, pp. 239–253. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Taverna, L., Chellali, R., Rossi, L.: 3D simulation of robotic fish interactions with physics-based underwater environment. In: OCEANS 2010 IEEE, pp. 1–4. IEEE Sydney (2010)Google Scholar
  41. 41.
    Ramakrishnan, S., Mittal, R., Lauder, G.V., Bozkurttas, M.: Analysis of maneuvering fish fin hydrodynamics using an immersed boundary method. In: AIAA 2008 38th Fluid Dynamics Conference and Exhibit. AIAA, Seattle, Washington (2008)Google Scholar
  42. 42.
    Mittal, R., Dong, H., Bozkurttas, M., Lauder, G., Madden, P.: Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish. Bioinspiration Biomimetics 1(4), S35–S41 (2006)CrossRefGoogle Scholar
  43. 43.
    Tabatabaei, M., Olcay, A.B., Gokçen, G., Heperkan, H.A.: Drag force and jet propulsion investigation of a swimming squid. In: EPJ Web of Conferences, vol. 92 (2015)Google Scholar
  44. 44.
    Yuan, H.Z., Shu, S., Niu, X.D., Li, M., Hu, Y.: A numerical study of jet propulsion of an oblate jellyfish using a momentum exchange-based immersed boundary-lattice boltzmann method. Adv. Appl. Math. Mech. 6(3), 307–326 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Sahin, M., Mohseni, K., Colin, S.P.: The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol. 212(16), 2656–2667 (2009)CrossRefGoogle Scholar
  46. 46.
    Sfakiotakis, M., Kazakidi, A., Pateromichelakis, N., Ekaterinaris, J.A., Tsakiris, D.P.: Robotic underwater propulsion inspired by the octopus multi-arm swimming. Robotics and Automation (ICRA). In: 2012 IEEE International Conference, pp. 3833–3839. IEEE (2012)Google Scholar
  47. 47.
    Van Rees, W.M., Gazzola, M., Koumoutsakos, P.: Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722, R3-1–R3-12 (2013)Google Scholar
  48. 48.
    Hirato, J., Kawaguchi, Y.: Calculation model of jellyfish for simulating the propulsive motion and the pulsation of the tentacles. In: 18th International Conference on Artificial Reality and Telexistence (2008)Google Scholar
  49. 49.
    Inomoto, T., Matsuno, K., Yamakawa, M., Asao, S., Ishihara, S.: Numerical Simulation of flows around jellyfish in a current. In: ICCM 2015, Auckland, NZ (2015)Google Scholar
  50. 50.
    Rudolf, D., Mould, D.: An Interactive fluid model of jellyfish for animation. In: Ranchordas, A., Pereira, J.M., Araújo, Hélder J., Tavares, João Manuel R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 59–72. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11840-1_5 CrossRefGoogle Scholar
  51. 51.
    Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209(24), 4841–4857 (2006)CrossRefGoogle Scholar
  52. 52.
    Shirgaonkar, A.A., Curet, O.M., Patankar, N.A., MacIver, M.A.: The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211(21), 3490–3503 (2008)CrossRefGoogle Scholar
  53. 53.
    Mittal, R.H., Dong, M., Bozkurttas, A., Von Loebbecke, A., Najjar, F.: Analysis of flying and swimming in nature using an immersed boundary method. Urbana51 (2006)Google Scholar
  54. 54.
    Matevž, D., Bajcar,T., Širok., B.: Numerical investigation of flow in the vicinity of a swimming jellyfish. Eng. Appl. Comput. Fluid Mech. 3(2), 258–270 (2009)Google Scholar
  55. 55.
    Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)CrossRefGoogle Scholar
  56. 56.
    Monaghan, J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Riedeberger, D., Rist, U.: Numerical simulation of laminar-turbulent transition on a dolphin using the γ-Re θ model. In: Nagel, W., Kröner, D., Resch, M. (eds.) High Performance Computing in Science and Engineering ‘11, pp. 379–391. Springer, Heidelberg (2012)Google Scholar
  59. 59.
    Enright, D., Marschner, S., Fedkiw, R., Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)Google Scholar
  60. 60.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM (2001)Google Scholar
  61. 61.
    Peskin, C.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Stam, J.: Stable fluids. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  63. 63.
    Lazunin, V., Savchenko, V.: Vortices formation for medusa-like objects. In: ECCOMAS CFD 2010 (2010)Google Scholar
  64. 64.
    Ichikawa, S., Yazaki, Y., Mochizuki, O.: Flow induced by jellyfish. Phys. Fluids 18(9), 091108 (2006)CrossRefGoogle Scholar
  65. 65.
    Tytell, E.: The hydrodynamics of eel swimming II. Effect of swimming speed. J. Exp. Biol. 207(19), 3265–3279 (2004)CrossRefGoogle Scholar
  66. 66.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Sussman, M., Puckett, E.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Li, S., Liu, W.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1 (2002)CrossRefGoogle Scholar
  69. 69.
    Cleary, P.W., Prakash, M., Ha, J., Stokes, N., Scott, C.: Smooth particle hydrodynamics: status and future potential. Prog. Comput. Fluid Dyn. Int. J. 7(2–4), 70 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Digital EntertainmentBournemouth UniversityPooleUK
  2. 2.National Centre for Computer AnimationBournemouth UniversityPooleUK

Personalised recommendations