Skip to main content

Limited Data Modelling Approaches for Engineering Applications

  • Chapter
  • First Online:

Abstract

In real-world situation, the process of data collection can be challenging and resource intensive, due to being costly, time consuming, and compute intensive. Thus, the amount of data needed to build accurate models is often limited. System identification, making decisions, and prediction based on limited data reduce the production yields, increase the production costs, and decrease the competitiveness of the enterprises; hence, developing an appropriate data model with smaller variance of forecasting error and good accuracy based on these small data sets helps the enterprises to meet the competitive environment. However, the mathematical deterministic approaches that solve problems based on existing theories with few amount of data are not part of this chapter. The chapter aims to review common data modelling techniques for limited data based on heuristic approaches. This review also provides an overview of some of the research to date on data modelling techniques with limited data for various engineering application areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd, A. M., & Abd, S. M. (2017). Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Studies in Construction Materials, 6, 8–15.

    Article  Google Scholar 

  • Ali, A. B. M. S. (2009). Dynamic and advanced data Mining for Progressing Technological Development: Innovations and systemic approaches: Innovations and systemic approaches. Information Science Reference.

    Google Scholar 

  • Ali, S., & Smith, K. A. (2006). On learning algorithm selection for classification. Applied Soft Computing, 6, 119–138.

    Article  Google Scholar 

  • Balabin, R. M., & Lomakina, E. I. (2011). Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst, 136, 1703–1712.

    Article  Google Scholar 

  • Barrett, J. D. (2007). Taguchi’s quality engineering handbook. Taylor & Francis.

    Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.

    Article  MATH  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    MathSciNet  MATH  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  MATH  Google Scholar 

  • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  • Cai, Z.-j., Lu, S., & Zhang, X.-b. (2009). Tourism demand forecasting by support vector regression and genetic algorithm. In Computer science and information technology, 2009. ICCSIT 2009. 2nd IEEE international conference on (pp. 144–146).

    Google Scholar 

  • Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an eclipse-based software fault prediction tool using naive Bayes algorithm. Expert Systems with Applications, 38(3), 2347–2353.

    Article  Google Scholar 

  • Cawley, G. C., & Talbot, N. L. (2004). Efficient model selection for kernel logistic regression. In Pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference on (pp. 439–442).

    Chapter  Google Scholar 

  • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131–159.

    Article  MATH  Google Scholar 

  • Chen, N. (2004). Support vector machine in chemistry. World Scientific Pub.

    Google Scholar 

  • Chen, Z.-S., Zhu, B., He, Y.-L., & Yu, L.-A. (2017). A PSO based virtual sample generation method for small sample sets: Applications to regression datasets. Engineering Applications of Artificial Intelligence, 59, 236–243.

    Article  Google Scholar 

  • Cherkassky, V., & Mulier, F. M. (2007). Learning from data: Concepts, theory, and methods. Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Cholette, M. E., Borghesani, P., Gialleonardo, E. D., & Braghin, F. (2017). Using support vector machines for the computationally efficient identification of acceptable design parameters in computer-aided engineering applications. Expert Systems with Applications, 81, 39–52.

    Article  Google Scholar 

  • Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.

    Article  Google Scholar 

  • Cosma, G., Brown, D., Archer, M., Khan, M., & Graham Pockley, A. (2017). A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Systems with Applications, 70, 1–19.

    Article  Google Scholar 

  • Crowley, P. H. (1992). Resampling methods for computation-intensive data analysis in ecology and evolution. Annual Review of Ecology and Systematics, 23, 405–447.

    Article  Google Scholar 

  • Curran-Everett, D. (2012). Explorations in statistics: Permutation methods. Advances in Physiology Education, 36, 181–187.

    Article  Google Scholar 

  • Datla, M. V. (2015). Bench marking of classification algorithms: Decision trees and random forests - a case study using R. In 2015 international conference on trends in automation, communications and computing technology (I-TACT-15) (pp. 1–7).

    Google Scholar 

  • Davim, P. (2012). Computational methods for optimizing manufacturing technology models and techniques. Hershey: Engineering Science Reference.

    Book  Google Scholar 

  • Davim, J. P. (2015). Design of Experiments in production engineering. Springer International Publishing.

    Google Scholar 

  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). New York: Cambridge university press.

    Book  MATH  Google Scholar 

  • Dobre, T. G., & Sanchez Marcano, J. G. (2007). Chemical engineering: Modelling, simulation and similitude. Weinheim: Wiley-VCH Verlag GmbH & KGaA.

    Book  Google Scholar 

  • Efron, B. (1992). Bootstrap methods: Another look at the jackknife. In Breakthroughs in statistics (pp. 569–593). Springer.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

    Google Scholar 

  • Ertekin, S. (2012). K-NN. Available: https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec06.pdf.

  • Exterkate, P. (2013). Model selection in kernel ridge regression. Computational Statistics & Data Analysis, 68, 1–16.

    Article  MathSciNet  Google Scholar 

  • Fan, X., & Wang, L. (1996). Comparability of jackknife and bootstrap results: An investigation for a case of canonical correlation analysis. The Journal of Experimental Education, 64, 173–189.

    Article  Google Scholar 

  • Fan, C., Xiao, F., & Zhao, Y. (2017). A short-term building cooling load prediction method using deep learning algorithms. Applied Energy, 195, 222–233.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghiasi, M. M., & Mohammadi, A. H. (n.d.). Application of decision tree learning in modelling CO2 equilibrium absorption in ionic liquids. Journal of Molecular Liquids.

    Google Scholar 

  • Golkarnarenji, G., Naebe, M., Church, J. S., Badii, K., Bab-Hadiashar, A., Atkiss, S., et al. (2017). Development of a predictive model for study of skin-core phenomenon in stabilization process of PAN precursor. Journal of Industrial and Engineering Chemistry, 49, 46–60.

    Article  Google Scholar 

  • Gunn, S. R. (1998) Support vector machines for classification and regression.

    Google Scholar 

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.

    Article  Google Scholar 

  • Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.

    Google Scholar 

  • Hoffman, J. I. E. (2015). Chapter 37 - resampling statistics. In Biostatistics for medical and biomedical practitioners (pp. 655–661). Academic Press.

    Google Scholar 

  • Hu, W., Yan, L., Liu, K., & Wang, H. (2016). A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Processing Letters, 43, 155–172.

    Article  Google Scholar 

  • Huang, C. (2002). Information diffusion techniques and small-sample problem. International Journal of Information Technology & Decision Making, 1, 229–249.

    Article  Google Scholar 

  • Huang, C., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35, 137–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter, D., Yu, H., Pukish, M. S., III, Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper neural network sizes and architectures—A comparative study. IEEE Transactions on Industrial Informatics, 8, 228–240.

    Article  Google Scholar 

  • Ilin, A., & Raiko, T. (2010). Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research, 11, 1957–2000.

    MathSciNet  MATH  Google Scholar 

  • Janssens, D., Wets, G., Brijs, T., Vanhoof, K., Arentze, T., & Timmermans, H. (2006). Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. European Journal of Operational Research, 175, 16–34.

    Article  MATH  Google Scholar 

  • Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15, 1667–1689.

    Article  MATH  Google Scholar 

  • Kermani, B. G., Schiffman, S. S., & Nagle, H. T. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical, 110, 13–22.

    Article  Google Scholar 

  • Khayyam, H., Naebe, M., Bab-Hadiashar, A., Jamshidi, F., Li, Q., Atkiss, S., et al. (2015a). Stochastic optimization models for energy management in carbonization process of carbon fiber production. Applied Energy, 158, 643–655.

    Article  Google Scholar 

  • Khayyam, H., Naebe, M., Zabihi, O., Zamani, R., Atkiss, S., & Fox, B. (2015b). Dynamic prediction models and optimization of Polyacrylonitrile (PAN) stabilization processes for production of carbon fiber. IEEE Transactions on Industrial Informatics, 11, 887–896.

    Article  Google Scholar 

  • Khayyam, H., Fakhrhoseini, S. M., Church, J. S., Milani, A. S., Bab-Hadiashar, A., Jazar, R. N., et al. (2017). Predictive modelling and optimization of carbon fiber mechanical properties through high temperature furnace. Applied Thermal Engineering, 125, 1539–1554.

    Article  Google Scholar 

  • Kohavi, R. (n.d.). A study of cross-validation and bootstrap for accuracy estimation and model selection.

    Google Scholar 

  • Kulkarni, S., & Harman, G. (2011). An elementary introduction to statistical learning theory (Vol. 853). Wiley.

    Google Scholar 

  • Lanouette, R., Thibault, J., & Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23, 1167–1176.

    Article  Google Scholar 

  • Lawal, I. A. (2011). Predictive modeling of material properties using GMDH-based Abductive networks. In Y. O. Mohammed (Ed.), Modelling symposium (AMS), 2011 fifth Asia (pp. 3–6).

    Chapter  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444., 05/28/print.

    Article  Google Scholar 

  • Leopold, E., & Kindermann, J. (2006). Content classification of multimedia documents using partitions of low-level features. JVRB - Journal of Virtual Reality and Broadcasting, 3, 2007.

    Google Scholar 

  • Li, F., & Pengfei, L. (2013). The research survey of system identification method. presented at the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC).

    Google Scholar 

  • Li, D.-C., & Wen, I. H. (2014a). A genetic algorithm-based virtual sample generation technique to improve small data set learning. Neurocomputing, 143, 222–230.

    Article  Google Scholar 

  • Li, D.-C., & Wen, I.-H. (2014b). A genetic algorithm-based virtual sample generation technique to improve small data set learning. Neurocomputing, 143, 222–230.

    Article  Google Scholar 

  • Li, D.-C., Wu, C., & Chang, F. M. (2006). Using data continualization and expansion to improve small data set learning accuracy for early flexible manufacturing system (FMS) scheduling. International Journal of Production Research, 44, 4491–4509.

    Article  MATH  Google Scholar 

  • Li, D.-C., Chang, C.-J., Chen, C.-C., & Chen, W.-C. (2012). A grey-based fitting coefficient to build a hybrid forecasting model for small data sets. Applied Mathematical Modelling, 36, 5101–5108.

    Article  MathSciNet  MATH  Google Scholar 

  • Liaw, A., & Wiener, M. (n.d.). Classification and regression by randomForest.

    Google Scholar 

  • Liu, H., Chen, G., Song, G., & Han, T. (2009). Analog circuit fault diagnosis using bagging ensemble method with cross-validation. In Mechatronics and automation, 2009. ICMA 2009. International conference on (pp. 4430–4434).

    Google Scholar 

  • Lu, Z. J., Xiang, Q., Wu, Y. m., & Gu, J. (2015). Application of support vector machine and genetic algorithm optimization for quality prediction within complex industrial process. In 2015 I.E. 13th international conference on industrial informatics (INDIN) (pp. 98–103).

    Chapter  Google Scholar 

  • Mao, R., Zhu, H., Zhang, L., & Chen, A. (2006). A new method to assist small data set neural network learning. In Intelligent systems design and applications, 2006. ISDA’06. Sixth international conference on (pp. 17–22).

    Google Scholar 

  • Montgomery, D. C. (2008). Design and analysis of experiments. Wiley.

    Google Scholar 

  • Motulsky, H. J., & Ransnas, L. A. (1987). Fitting curves to data using nonlinear regression: A practical and nonmathematical review. The FASEB Journal, 1, 365–374.

    Article  Google Scholar 

  • Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86, 2196–2209.

    Article  Google Scholar 

  • Pal, M., & Foody, G. M. (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1344–1355.

    Article  Google Scholar 

  • Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.

    Google Scholar 

  • Peng, X., Cai, Y., Li, Q., & Wang, K. (2017). Control rod position reconstruction based on K-nearest neighbor method. Annals of Nuclear Energy, 102, 231–235.

    Article  Google Scholar 

  • Pham, Q. T. (1998). Dynamic optimization of chemical engineering processes by an evolutionary method. Computers & Chemical Engineering, 22, 1089–1097.

    Article  Google Scholar 

  • Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling. New York: Springer.

    Book  MATH  Google Scholar 

  • Powell, M. (1965). A method for minimizing a sum of squares of non-linear functions without calculating derivatives. The Computer Journal, 7, 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Rasmuson, A., Andersson, B., Olsson, L., & Andersson, R. (2014a). Mathematical modeling in chemical engineering. New York: Cambridge University Press.

    Book  Google Scholar 

  • Rasmuson, A., Andersson, B., Olsson, L., & Andersson, R. (2014b). Mathematical modeling in chemical engineering. New York: Cambridge University Press.

    Book  Google Scholar 

  • Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on machine learning (pp. 63–71). Berlin: Springer.

    Chapter  Google Scholar 

  • Ratner, B. (2011). Statistical and machine-learning data mining: Techniques for better predictive modeling and analysis of big data. CRC Press.

    Google Scholar 

  • Rodrigues, A. E., & Minceva, M. (2005). Modelling and simulation in chemical engineering: Tools for process innovation. Computers & Chemical Engineering, 29, 1167–1183.

    Article  Google Scholar 

  • Rokach, L., & Maimon, O. (2014). Data mining with decision trees: Theory and applications. World scientific.

    Google Scholar 

  • Ross, S. M. (2009). Introduction to probability and statistics for engineers and scientists. Elsevier Science.

    Google Scholar 

  • Ruparel, N. H., Shahane, N. M., & Bhamare, D. P. (n.d.). Learning from small data set to build classification model: A survey.

    Google Scholar 

  • Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Nonlinear estimation and classification (Vol. 171, p. 149). Springer.

    Google Scholar 

  • Sharma, A., & Paliwal, K. K. (2015). Linear discriminant analysis for the small sample size problem: An overview. International Journal of Machine Learning and Cybernetics, 6, 443–454.

    Article  Google Scholar 

  • Shatovskaya, T., Repka, V., & Good, A. (2006). Application of the Bayesian networks in the informational modeling. In 2006 international conference - modern problems of radio engineering, telecommunications, and computer science (pp. 108–108).

    Chapter  Google Scholar 

  • Stenger, T. -K. K. B. Available: http://www.iis.ee.ic.ac.uk/icvl/iccv09_tutorial.html.

  • Tsai, T.-I., & Li, D.-C. (2008). Utilize bootstrap in small data set learning for pilot run modeling of manufacturing systems. Expert Systems with Applications, 35, 1293–1300.

    Article  Google Scholar 

  • Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999.

    Article  Google Scholar 

  • Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley.

    MATH  Google Scholar 

  • Vapnik, V., Golowich, S. E., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In Advances in neural information processing systems (Vol. 9).

    Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.

    Article  Google Scholar 

  • Xu, J., Yao, L., & Li, L. (2015). Argumentation based joint learning: A novel ensemble learning approach. PLoS One, 10, e0127281.

    Article  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251–266.

    Article  Google Scholar 

  • Yoo, K., Shukla, S. K., Ahn, J. J., Oh, K., & Park, J. (2016). Decision tree-based data mining and rule induction for identifying hydrogeological parameters that influence groundwater pollution sensitivity. Journal of Cleaner Production, 122, 277–286.

    Article  Google Scholar 

  • Zhang, C.-X., Zhang, J.-S., & Zhang, G.-Y. (2008). An efficient modified boosting method for solving classification problems. Journal of Computational and Applied Mathematics, 214, 381–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen, H., Hong, L., Mujiao, F., & Chunbi, X. (2010). Application of statistical learning theory to predict corrosion rate of injecting water pipeline. In Cognitive informatics (ICCI), 2010 9th IEEE international conference on (pp. 132–136).

    Google Scholar 

  • Zhou, J., & Huang, J. (2012). Support-vector modeling and optimization for microwave filters manufacturing using small data sets. In Industrial informatics (INDIN), 2012 10th IEEE international conference on (pp. 202–207).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Khayyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khayyam, H., Golkarnarenji, G., Jazar, R.N. (2018). Limited Data Modelling Approaches for Engineering Applications. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-69480-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69480-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69479-5

  • Online ISBN: 978-3-319-69480-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics