Skip to main content

A Semi-analytical Solution for Bending of Nonlinear Magnetostrictive Beams

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

In this chapter, the bending behavior of magnetostrictive beams is investigated. A nonlinear constitutive model is used to relate the magnetomechanical properties of the beam material. The beam is subjected to a linear prestress through a mechanical bending moment as well as a uniform longitudinal magnetic field. A semi-analytical algorithm is proposed for obtaining the magnetization, stress profile, and deflection of simply supported and cantilever beams. Comparing the results with those of experimental works, it is shown that the one-dimensional nonlinear model which was previously used to model the magnetostrictive rods and thin films can also accurately model the beams. It is shown that in a constant mechanical bending moment, the beam deflection first increases in the region of low fields and then decreases smoothly as the magnetic field increases. The nonlinear magnetization and stress profiles through the thickness of the beam are obtained for various values of bending moment as complementary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudi, J., Zheng, X., & Jin, K. (2014). Micromechanics of magnetostrictive composites. International Journal of Engineering Science, 81, 82–99.

    Article  MathSciNet  Google Scholar 

  • Bozorth, R. M., & Williams, H. J. (1945). Effect of small stresses on magnetic properties. Reviews of Modern Physics, 17(1), 72.

    Article  Google Scholar 

  • Carman, G. P., & Mitrovic, M. (1995). Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. Journal of Intelligent Material Systems and Structures, 6(5), 673–683.

    Article  Google Scholar 

  • Clark, A. E., Teter, J. P., & McMasters, O. D. (1988). Magnetostriction “jumps” in twinned Tb0.3Dy0.7Fe1.9. Journal of Applied Physics, 63(8), 3910–3912.

    Article  Google Scholar 

  • Duenas, T. A., Hsu, L., & Cakman, G. P. (1996). Magnetostrictive composite material systems analytical/experimental. In MRS Proceedings (Vol. 459, p. 527). New York: Cambridge University Press.

    Google Scholar 

  • Jiles, D. C. (1995). Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 28(8), 1537.

    Article  Google Scholar 

  • Jiles, D. C., & Atherton, D. L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61, 48–60.

    Article  Google Scholar 

  • Jin, K., Kou, Y., & Zheng, X. (2012a). A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys. Journal of Magnetism and Magnetic Materials, 324(12), 1954–1961.

    Article  Google Scholar 

  • Jin, K., Kou, Y., & Zheng, X. (2012b). The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. Smart Materials and Structures, 21(4), 045020.

    Article  Google Scholar 

  • Liang, Y., & Zheng, X. (2007). Experimental researches on magneto-thermo-mechanical characterization of Terfenol-D. Acta Mechanica Solida Sinica, 20(4), 283–288.

    Article  Google Scholar 

  • Linnemann, K., Klinkel, S., & Wagner, W. (2009). A constitutive model for magnetostrictive and piezoelectric materials. International Journal of Solids and Structures, 46(5), 1149–1166.

    Article  MATH  Google Scholar 

  • Moffett, M. B., Clark, A. E., Wun-Fogle, M., Linberg, J., Teter, J. P., & McLaughlin, E. A. (1991). Characterization of Terfenol-D for magnetostrictive transducers. The Journal of the Acoustical Society of America, 89(3), 1448–1455.

    Article  Google Scholar 

  • Sablik, M. J., & Jiles, D. C. (1993). Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics, 29(4), 2113–2123.

    Article  Google Scholar 

  • Schatz, F., Hirscher, M., Schnell, M., Flik, G., & Kronmüller, H. (1994). Magnetic anisotropy and giant magnetostriction of amorphous TbDyFe films. Journal of Applied Physics, 76(9), 5380–5382.

    Article  Google Scholar 

  • Smith, R. C., Dapino, M. J., & Seelecke, S. (2003). Free energy model for hysteresis in magnetostrictive transducers. Journal of Applied Physics, 93(1), 458–466.

    Article  Google Scholar 

  • Wan, Y., Fang, D., & Hwang, K. C. (2003). Non-linear constitutive relations for magnetostrictive materials. International Journal of Non-Linear Mechanics, 38(7), 1053–1065.

    Article  MATH  Google Scholar 

  • Liu, X., & Zheng, X. (2005). A nonlinear constitutive model for magnetostrictive materials. Acta Mechanica Sinica, 21(3), 278–285.

    Google Scholar 

  • Zheng, X., & Sun, L. (2007). A one-dimension coupled hysteresis model for giant magnetostrictive materials. Journal of Magnetism and Magnetic Materials, 309(2), 263–271.

    Article  Google Scholar 

  • Zheng, X., Sun, L., & Jin, K. (2009). A dynamic hysteresis constitutive relation for giant magnetostrictive materials. Mechanics of Advanced Materials and Structures, 16(7), 516–521.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Aghdam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikholeslami, S.A., Aghdam, M.M. (2018). A Semi-analytical Solution for Bending of Nonlinear Magnetostrictive Beams. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-69480-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69480-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69479-5

  • Online ISBN: 978-3-319-69480-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics