Skip to main content

Observation and Feedback-Suppression of Measurement Back-Action

  • Chapter
  • First Online:
Quantum Limits on Measurement and Control of a Mechanical Oscillator

Part of the book series: Springer Theses ((Springer Theses))

  • 870 Accesses

Abstract

Realizing a quantum-noise-limited measurement of the position of a harmonic oscillator has been a 30 year old white whale of experimental physics, stretching back to the conception of interferometric gravitational wave antennae. Here we perform an interferometric position measurement with an imprecision 40 dB below that at the standard quantum limit, and observe back-action commensurate with it, due to radiation-pressure quantum fluctuations. We demonstrate how feedback can be used in this regime to suppress back-action.

Moby Dick seeks thee not. It is thou, thou, that madly

seekest him!

Herman Melville

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This is derived as follows. Assume the body is in thermal equilibrium at temperature T, so that it is described by the canonical thermal state \(\hat{\rho }=e^{-\beta \hat{H}}/Z\), with \(Z :=\,\mathrm {Tr}\, e^{-\beta \hat{H}}\), and \(\beta :=\,(k_B T)^{-1}\). Then, the average energy is given by, \(\langle {\hat{H}}\rangle :=\,\mathrm {Tr}\, \hat{H}\hat{\rho } = -\frac{1}{Z}\partial _\beta Z\), while its second moment is, \(\langle {\hat{H}\rangle ^2} :=\,\mathrm {Tr}\, \hat{H}^2 \hat{\rho } = \frac{1}{Z}\partial _\beta ^2 Z = -\partial _\beta \langle {\hat{H}}\rangle +\langle {\hat{H}}\rangle ^2\). Subtracting these two expressions give the variance in the energy:

    $$\begin{aligned} \mathrm {Var}\left[ {\hat{H}}\right] :=\,\langle \hat{H}^2\rangle -\langle {\hat{H}}\rangle ^2 = -\partial _\beta \langle {\hat{H}\rangle } = k_B T^2\, \partial _T \langle {\hat{H}}\rangle = k_B T^2 C_V. \end{aligned}$$

    Here, \(C_V :=\,\partial _T \langle {\hat{H}}\rangle \) is the specific heat at constant volume as defined conventionally. To refer the above variance in energy to an apparent variance in temperature, we again use the definition of the specific heat, \(\delta T = \delta E/C_V\), to arrive at, \(\mathrm {Var}\left[ {T}\right] = \mathrm {Var}\left[ {E}\right] /C_V^2 = k_B T^2/C_V\).

  2. 2.

    Longitudinal elastic modes have a similar effect, but their frequency being larger, the resulting phase noise isn’t relevant in our experiment.

  3. 3.

    A function f(t) is (asymptotically) stable if \(\left| {f(t\rightarrow \infty )}\right| < \infty \); it is causal if \(f(t<0) = 0\). These properties can be expressed in terms of the Fourier transform,

    $$\begin{aligned} f[\Omega ] = \int _{-\infty }^{\infty } f(t) e^{i\Omega t}\, \mathrm {d}t, \end{aligned}$$

    extended to the complex plane (i.e. \(\Omega \mapsto \Omega +i\Gamma \)). Firstly the bound (an instance of the triangle inequality),

    $$\begin{aligned} \left| {f[\Omega +i\Gamma ]}\right| = \left| {\int f(t) e^{(i\Omega -\Gamma )t}\, \mathrm {d}t}\right| \le \int \left| {f(t)}\right| e^{-\Gamma t}\, \mathrm {d}t, \end{aligned}$$

    together with stability implies that, \(\left| {f[\Omega +i\Gamma ]}\right| < \infty \,\, \mathrm {for}\,\, \Gamma > 0\); thus, all singularities of \(f[\Omega +i\Gamma ]\) are in the lower-half plane (real axis included). Secondly, causality in time domain can be expressed as the identity \(f(t)=\Theta (t)f(t)\), where \(\Theta \) is the Heaviside step function; taking its Fourier transform gives,

    $$\begin{aligned} f[\Omega ] = \frac{i}{\pi }\int _{-\infty }^{\infty } \frac{f[\Omega ']}{\Omega '-\Omega }\,\mathrm {d}\Omega ', \end{aligned}$$

    a constraint imposed by casuality for real frequencies (separating out the real and imaginary parts of this equation gives the Kramers-Kronig relation). We now consider the integral of \(f[\Omega ']/(\Omega '-\Omega )\) along a contour C in the complex plane that consists of the real line and an arc at infinity enclosing the upper-half plane; by stability, the latter integral is zero; by causality, the former satisfies the above constraint; thus, we can show that,

    $$\begin{aligned} \oint _C \frac{f[\Omega ']}{\Omega '-\Omega } \mathrm {d}\Omega ' = 0. \end{aligned}$$

    Therefore (by Cauchy’s theorem) \(f[\Omega ]\) is analytic in the upper-half plane [63,64,65,66]. (A stronger version of this line of inference goes by the name of Titchmarsh’s theorem, which identifies causal and stable functions as boundary values of analytic functions [67, Section 17.8].)

  4. 4.

    This is generally true of symmetrized spectra of the observables of linear Markovian systems driven by white-noise. Firstly, the spectra of the observables of such systems is a rational function of the frequency, i.e. a ratio of polynomials (Markovianity is essential for this to be true since arbitrarily long time delays preserve linearity but do not have a rational frequency response). Secondly, considering \(\Omega \) to be extended into the complex plane, it can be shown that the spectrum of an observable, say y, satisfies the relation, \(\bar{S}_{yy}[\Omega ]=\bar{S}_{yy}^*[-\Omega ^*]\) (for real frequencies, this reduces to, \(\bar{S}_{yy}[\Omega ]=\bar{S}_{yy}[-\Omega ]\), given in Eq.  2.1.16). This symmetry implies a characteristic symmetry for the roots of the numerator and denominator polynomials: purely real roots occur in positive/negative pairs, while purely imaginary ones in conjugate pairs, and complex roots occur in conjugate positive/negative quadruplets. Thus, both the numerator and denominator can be factorised such that the factors have zeros symmetric about the real-axis. Collecting those factors with zeros and poles in either half-plane gives the required factorisation.

  5. 5.

    A theorem due to Bode [63] asserts that for a causal stable filter, a magnitude response that falls off as some polynomial power, \(\Omega ^n\), has to impart at least a phase change of \(n\pi /2\); thus this filter adds a phase of \(\pi /2\).

References

  1. C.M. Caves, Phys. Rev. Lett 45, 75 (1980)

    Article  ADS  Google Scholar 

  2. A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gürsel, S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, M.E. Zucker, Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  3. D.E. McClelland, N. Mavalvala, Y. Chen, R. Schnabel, Laser Photon. Rev. 677 (2011)

    Google Scholar 

  4. V. Braginsky, A. Manukin, Sov. Phys. JETP 25, 653 (1967)

    ADS  Google Scholar 

  5. M. Evans et al., Phys. Rev. Lett. 114, 161102 (2015)

    Article  ADS  Google Scholar 

  6. C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkins, H.J. Kimble, Science 287, 1447 (2000)

    Article  ADS  Google Scholar 

  7. K.C. Schwab, M.L. Roukes, Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  8. D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Nature 524, 325 (2015)

    Article  ADS  Google Scholar 

  9. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, 1992)

    Google Scholar 

  10. H. Wiseman, Phys. Rev. A 51, 2459 (1995)

    Article  ADS  Google Scholar 

  11. J.M. Courty, A. Heidmann, M. Pinard, Europhys. Lett. 63, 226 (2003)

    Article  ADS  Google Scholar 

  12. M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. Sliwa, B. Abdo, L. Frunzio, S. Girvin et al., Science 339, 178 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.L. Gorodetsky, A.D. Pryamikov, V.S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000)

    Article  ADS  Google Scholar 

  14. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Opt. Lett. 27, 1669 (2002)

    Article  ADS  Google Scholar 

  15. T.J. Kippenberg, K.J. Vahala, Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  16. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  17. A. Gillespie, F. Raab, Phys. Lett. A 178, 357 (1993)

    Article  ADS  Google Scholar 

  18. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, L. Rousseau, Phys. Rev. Lett. 97, 133601 (2006)

    Article  ADS  Google Scholar 

  19. W.H. Glenn, IEEE, J. Quant. Elec. 25, 1218 (1989)

    Google Scholar 

  20. V.B. Braginsky, M.L. Gorodetsky, S.P. Vyatchanin, Phys. Lett. A 264, 1 (1999)

    Article  ADS  Google Scholar 

  21. V.B. Braginsky, M.L. Gorodetsky, S.P. Vyatchanin, Phys. Lett. A 271, 303 (2000)

    Article  ADS  Google Scholar 

  22. A.B. Matsko, A.A. Savchenkov, N. Yu, L. Maleki, J. Opt. Soc. Am. B 24, 1324 (2007)

    Article  ADS  Google Scholar 

  23. K. Numata, A. Kemery, J. Camp. Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  24. G. Anetsberger, E. Gavartin, O. Arcizet, Q.P. Unterreithmeier, E.M. Weig, M.L. Gorodetsky, J.P. Kotthaus, T.J. Kippenberg, Phys. Rev. A 82, 061804 (2010)

    Article  ADS  Google Scholar 

  25. C.E. Wieman, L. Hollberg, Rev. Sci. Instru. 62, 1 (1991)

    Article  ADS  Google Scholar 

  26. P.R. Saulson, Phys. Rev. D 42, 2437 (1990)

    Article  ADS  Google Scholar 

  27. T. Uchiyama, S. Miyoki, S. Telada, K. Yamamoto, M. Ohashi, K. Agatsuma, K. Arai, M.-K. Fujimoto, T. Haruyama, S. Kawamura, O. Miyakawa, N. Ohishi, T. Saito, T. Shintomi, T. Suzuki, R. Takahashi, D. Tatsumi, Phys. Rev. Lett. 108, 141101 (2012)

    Article  ADS  Google Scholar 

  28. M.L. Gorodetsky, I.S. Grudinin, J. Opt. Soc. Am. B 21, 697 (2004)

    Article  ADS  Google Scholar 

  29. O. Arcizet, R. Rivière, A. Schliesser, G. Anetsberger, T. Kippenberg, Phys. Rev. A 80, 021803(R) (2009)

    Article  ADS  Google Scholar 

  30. R.O. Pohl, X. Liu, E. Thompson, Rev. Mod. Phys 74, 991 (2002)

    Article  ADS  Google Scholar 

  31. R. Zeller, R. Pohl, Phys. Rev. B 4, 2029 (1971)

    Article  ADS  Google Scholar 

  32. R. Shelby, M.D. Levenson, P.W. Bayer, Phys. Rev. B 31, 5244 (1985)

    Article  ADS  Google Scholar 

  33. E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, T.J. Kippenberg, Nature 482, 63 (2012)

    Google Scholar 

  34. G. van Lear, G.E. Uhlenbeck, Phys. Rev 38, 1583 (1931)

    Article  ADS  Google Scholar 

  35. A. Yariv, Quantum Electronics (John Wiley, 1989)

    Google Scholar 

  36. P. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  37. T.P. Purdy, R.W. Peterson, C. Regal, Science 339, 801 (2013)

    Article  ADS  Google Scholar 

  38. J. Teufel, F. Lecocq, R. Simmonds, Phys. Rev. Lett. 116, 013602 (2016)

    Article  ADS  Google Scholar 

  39. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2002)

    Article  ADS  Google Scholar 

  40. J.P. Dowling, G.J. Milburn, Phil. Trans. Roy. Soc. A 361, 1655 (2003)

    Article  ADS  Google Scholar 

  41. D. D’Alessandro, Introduction to Quantum Control and Dynamics (Chapman & Hall, 2008)

    Google Scholar 

  42. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  43. F. Verstraete, M.M. Wolf, J. Ignacio Cirac, Nat. Phy. 5, 633 (2009)

    Google Scholar 

  44. C. Altafini, J. Math. Phys 44, 2357 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Lidar, I. Chuang, K. Whaley, Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  46. H.M. Wiseman, Phys. Rev. A 49, 2133 (1994)

    Article  ADS  Google Scholar 

  47. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2010)

    Google Scholar 

  48. S. Lloyd, Phys. Rev. A 62, 022108 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche, Nature 477, 73 (2011)

    Article  ADS  Google Scholar 

  50. B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. Raimond, M. Brune, S. Haroche, Phys. Rev. A 87, 042320 (2013)

    Article  ADS  Google Scholar 

  51. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Nature 490, 77 (2012)

    Article  ADS  Google Scholar 

  52. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  53. A.C. Doherty, A. Szorkovszky, G.I. Harris, W.P. Bowen, Phil. Trans. Roy. Soc. A 370, 5338 (2012)

    Article  ADS  Google Scholar 

  54. S. Mancini, D. Vitali, P. Tombesi, Phys. Rev. Lett 80, 688 (1998)

    Article  ADS  Google Scholar 

  55. J. Courty, A. Heidmann, M. Pinard, Eur. Phys. J. D 17, 399 (2001)

    Article  ADS  Google Scholar 

  56. N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series (MIT Technology Press, 1949)

    Google Scholar 

  57. T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation (Prentice-Hall, 2000)

    Google Scholar 

  58. V.P. Belavkin, Rep. Math. Phys. 43, A405 (1999)

    Article  ADS  Google Scholar 

  59. H.M. Wiseman, A.C. Doherty, Phys. Rev. Lett. 94, 070405 (2005)

    Article  ADS  Google Scholar 

  60. L. Bouten, R. van Handel, M. James, SIAM J. Control Optim. 46, 2199 (2007)

    Article  MathSciNet  Google Scholar 

  61. M. James, H. Nurdin, I. Petersen, I.E.E.E. Trans, Auto. Control 53, 1787 (2008)

    Article  Google Scholar 

  62. S.G. Hofer, K. Hammerer, Phys. Rev. A 91, 033822 (2015)

    Article  ADS  Google Scholar 

  63. H.W. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand Company, 1945)

    Google Scholar 

  64. N.G. van Kampen, Phys. Rev. 91, 1267 (1953)

    Article  ADS  Google Scholar 

  65. J. Giambiagi, I. Saavedra, Nucl. Phys. B 46, 413 (1963)

    Article  Google Scholar 

  66. H.M. Nussenzveig, Phys. Rev. 177, 1848 (1969)

    Article  ADS  Google Scholar 

  67. F.W. King, Hilbert Transforms, vol 2 (Cambridge University Press, 2009)

    Google Scholar 

  68. I.M. Gelfand, S.V. Fomin, Calculus of Variations (Prentice-Hall, 1963)

    Google Scholar 

  69. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  Google Scholar 

  70. B. Abbott et al., New J. Phys 11, 073032 (2009)

    Article  ADS  Google Scholar 

  71. J.M.W. Milatz, J.J. Van Zolingen, B.B. Van Iperen, Physica 19, 195 (1953)

    Article  ADS  Google Scholar 

  72. J.A. Sirs, J. Sci. Instrum. 36, 223 (1959)

    Article  ADS  Google Scholar 

  73. P.G. Roll, R. Krotkov, R.H. Dicke, Ann. Phys 26, 442 (1964)

    Article  ADS  Google Scholar 

  74. R.L. Forward, J. Appl. Phys. 50, 1 (1979)

    Article  ADS  Google Scholar 

  75. D. Möhl, G. Petrucci, L. Thorndahl, S. van der Meer, Phys. Rep. 58, 73 (1980)

    Article  ADS  Google Scholar 

  76. B. D’Urso, B. Odom, G. Gabrielse, Phys. Rev. Lett 90, 043001 (2003)

    Article  ADS  Google Scholar 

  77. D. Kleckner, D. Bouwmeester, Nature 444, 75 (2006)

    Article  ADS  Google Scholar 

  78. M. Poggio, C. Degen, H. Mamin, D. Rugar, Phys. Rev. Lett. 99, 017201 (2007)

    Article  ADS  Google Scholar 

  79. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Phys Rev. Lett 99, 160801 (2007)

    Article  ADS  Google Scholar 

  80. A. Vinante, M. Bignotto, M. Bonaldi, M. Cerdonio, L. Conti, P. Falferi, N. Liguori, S. Longo, R. Mezzena, A. Ortolan, G.A. Prodi, F. Salemi, L. Taffarello, G. Vedovato, S. Vitale, J.-P. Zendri, Phys. Rev. Lett. 101, 033601 (2008)

    Article  ADS  Google Scholar 

  81. A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe, Nature 462, 898 (2009)

    Article  ADS  Google Scholar 

  82. T. Li, S. Kheifets, M.G. Raizen, Nat. Phys. 7, 527 (2011)

    Article  Google Scholar 

  83. J. Giesler, B. Deutsch, R. Quidant, L. Novotny, Phys. Rev. Lett 109, 103603 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivishek Sudhir .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudhir, V. (2018). Observation and Feedback-Suppression of Measurement Back-Action. In: Quantum Limits on Measurement and Control of a Mechanical Oscillator. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69431-3_6

Download citation

Publish with us

Policies and ethics