Skip to main content

Experimental Platform: Cryogenic Near-Field Cavity Optomechanics

  • Chapter
  • First Online:
Quantum Limits on Measurement and Control of a Mechanical Oscillator

Part of the book series: Springer Theses ((Springer Theses))

  • 882 Accesses

Abstract

Radiation-pressure coupling between a mechanical oscillator and an electromagnetic cavity allows, in principle, for an exquisitely sensitive measurement of the oscillator’s motion. In practice, it takes careful engineering to realize this goal. Here we describe the salient properties of our system that enable a quantum-noise-limited performance.

Quantum  phenomena  do  not  occur  in  a Hilbert space, they occur in a laboratory.

Asher Peres

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In this case, intuition is garnered from a different perspective on the measurement process: ideally, the meter and the system gets tightly entangled in the course of the measurement interaction; monogamy of entanglement then requires that the system has to be exclusively entangled with the meter.

  2. 2.

    We here ignore the two-dimensional extension of the beam, justified by the fact that in the cases of interest, the characteristic extension along this dimension is much smaller than the length of the beam. In doing so, we treat the two possible transverse displacements, along the coordinate \(x-\) and \(y-\)directions, using independent Euler-Bernoulli equations; the small coupling between these two mode families, arising from a finite Poisson’s ratio (\(\varsigma _{\text {SiN}}\approx 0.24\)), is therefore ignored. Within this approximation, effects arising from rotation and shear in the transverse direction are also ignored [24, 25].

  3. 3.

    A common-path interferometer (for example using the frequency modulation spectroscopy technique described in Sect. 3.2.4), is technically easier to implement. However, it is not preferred in a cryogenic environment due to the large (mW range) LO powers that might scatter in the cold environment.

  4. 4.

    By design, this cryostat is not meant for cold operation without buffer gas. In order to achieve low temperatures without having buffer gas in the sample volume, we first condense \(^{3}\)He: this is done by filling the \(1\,\text {K}\) pot with liquid \(^{4}\)He and pumping on it to cool it down to \({<}2\, \text {K}\); finally the sorption pump is heated to \(25\, \text {K}\) to eject out all \(^{3}\)He gas and pressurise it. Once condensed, droplets of liquid \(^{3}\)He accumulate at the bottom of the cryostat (the so-called “\(^{3}\)He tail”); pumping on the condensed liquid using the sorption pump evaporatively cools the liquid to as low as \(0.3\, \text {K}\). Once all the condensed \(^{3}\)He is evaporated, the sample volume is in vacuum and the sample temperature slowly rises.

  5. 5.

    In confined spaces, even in the regime of \(\text {Kn}>10\), recoil events may not be independent, leading to an excess thermal force [41] with a characteristic time-scale inversely related to the dimensions of the constriction—this effect is not observed here.

  6. 6.

    It is interesting to note that in the extreme regime, \(\text {Kn}\ll 0.1\), the spectrum of gas damping samples the inter-particle collisions of the gas atoms [42, 43] and necessitates a non-Newtonian fluid model—however this regime is not relevant here.

  7. 7.

    The Reynolds number, (beam velocity)(transverse length)/(kinematic viscosity of He), determines this. For the beam undergoing thermal motion, its root mean square velocity on resonance is \(\sqrt{2 n_\text {m,th}} x_\text {zp}\frac{\Omega _\text {m}}{2\pi } \approx 10^{-4}\, \text {m/s}\). For beam transverse dimension of \(0.5\,\upmu \mathrm{m}\), it follows that, \(\mathrm{Re} < 10^{-4}\).

  8. 8.

    Due to the nature of the problem, it seems reasonable to imagine that for a narrow longitudinal (along the beam) constriction with a transverse opening, squeeze-films get evacuated much more quickly than diffusion would suggest. In fact molecules in a squeeze film execute Lévy walks [45], lending plausibility to their absence after even a short pumping time.

References

  1. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. W.E. Newell, Science 161, 1320 (1968)

    Article  ADS  Google Scholar 

  3. H.G. Craighead, J. Sci. 290, 1532 (2000)

    Article  ADS  Google Scholar 

  4. K.L. Ekinci, M.L. Roukes, Rev. Sci. Instr. 76, 061101 (2005)

    Article  ADS  Google Scholar 

  5. K.C. Schwab, M.L. Roukes, Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  6. K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, J. Microelectromech. Syst. 9, 117 (2000)

    Article  Google Scholar 

  7. P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Phys. Rev. B 66, 085416 (2002)

    Article  ADS  Google Scholar 

  8. M. Imboden, P. Mohanty, Phys. Rep. 534, 89 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.S.Verbridge, J.M. Parpia, R.B. Reichenbach, L.M. Bellan, H.G. Craighead, J. Appl. Phys. 99 (2006)

    Google Scholar 

  10. S.S. Verbridge, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 92, 013112 (2008a)

    Google Scholar 

  11. Q.P. Unterreithmeier, T. Faust, J.P. Kotthaus, Phys. Rev. Lett. 105, 027205 (2010)

    Article  ADS  Google Scholar 

  12. S. Schmid, K.D. Jensen, K.H. Nielsen, A. Boisen, Phys. Rev. B 84, 165307 (2011)

    Google Scholar 

  13. R. Schilling, H. Schütz, A. Ghadimi, V. Sudhir, D. Wilson, T. Kippenberg, Phys. Rev. Applied 5, 054019 (2016)

    Article  ADS  Google Scholar 

  14. G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. Rivière, A. Schliesser, E.M. Weig, J.P. Kotthaus, T.J. Kippenberg, Nat. Phys. 5, 909 (2009)

    Article  Google Scholar 

  15. G. Anetsberger, Novel cavity optomechanical systems at the micro- and nanoscale and quantum measurements of nanomechanical oscillators. Ph.D. thesis, LMU Munich, 2010

    Google Scholar 

  16. E. Gavartin, Optonanomechanical systems for measurement applications. Ph.D. thesis, EPFL, 2013

    Google Scholar 

  17. M. Nieto-Vesperinas, P.C. Chaumet, A. Rahmani, Phil. Trans. Roy. Soc. A 362, 719 (2004)

    Article  ADS  Google Scholar 

  18. Q.P. Unterreithmeier, E.M. Weig, J.P. Kotthaus, Nature 458, 1001 (2009)

    Article  ADS  Google Scholar 

  19. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, Nature 459, 550 (2009)

    Article  ADS  Google Scholar 

  20. D. van Thourhout, J. Roels, Nat. Phot. 4, 211 (2010)

    Article  Google Scholar 

  21. B.E. Littleand, H.A. Haus, J. Lightwave Tech. 17, 704 (1999)

    Article  ADS  Google Scholar 

  22. M.L. Gorodetsky, A.E. Fomin, IEEE J. Selec. Top. Quant. Elec. 12, 33 (2006)

    Google Scholar 

  23. M. Pinard, Y. Hadjar, A. Heidmann, Eur. Phys. J. D 7, 107 (1999)

    ADS  Google Scholar 

  24. S. Timoshenko, Vibration Problems in Engineering, 2nd edn. (D.Van Nostrand Company, 1937)

    Google Scholar 

  25. S.M. Han, H. Benaroya, T. Wei, J. Sound Vib. 225, 935 (1999)

    Article  ADS  Google Scholar 

  26. R.O. Pohl, X. Liu, E. Thompson, Rev. Mod. Phys. 74, 991 (2002)

    Article  ADS  Google Scholar 

  27. T. Faust, J. Rieger, M.J. Seitner, J.P. Kotthaus, E.M. Weig, Phys. Rev. B 89, 100102 (2014)

    Article  ADS  Google Scholar 

  28. L.G. Villanueva, S. Schmid, Phys. Rev. Lett. 113, 227201 (2014)

    Article  ADS  Google Scholar 

  29. B.M. Zwickl, W.E. Shanks, A.M. Jayich, C. Yang, A.C. Bleszynski, J.D. Thompson, J.G.E. Harris, Appl. Phys. Lett. 92, 103125 (2008)

    Article  ADS  Google Scholar 

  30. D.J. Wilson, C.A. Regal, S.B. Papp, H.J. Kimble, Phys. Rev. Lett. 103, 207204 (2009)

    Article  ADS  Google Scholar 

  31. G.I. González, P.R. Saulson, J. Acoust. Soc. Am. 96, 207 (1994)

    Article  ADS  Google Scholar 

  32. P.-L. Yu, T.P. Purdy, C.A. Regal, Phys. Rev. Lett. 108, 083603 (2012)

    Article  ADS  Google Scholar 

  33. M.L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, T.J. Kippenberg, Opt. Exp. 18, 23236 (2010)

    Article  ADS  Google Scholar 

  34. E.A. Whittaker, M. Gehrtz, G.C. Bjorklund, J. Opt. Soc. Am. B 2, 1320 (1985)

    Article  ADS  Google Scholar 

  35. N.C. Wong, J.L. Hall, J. Opt. Soc. Am. B 2, 1527 (1985)

    Article  ADS  Google Scholar 

  36. W. Zhang, M.J. Martin, C. Benko, J.L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G.D. Cole, M. Aspelmeyer, Opt. Lett. 39, 1980 (2014)

    Article  ADS  Google Scholar 

  37. R.B. Blackman, J.W. Tuckey, The Measurement of Power Spectra (Dover, 1959)

    Google Scholar 

  38. T. Briant, P.F. Cohadon, M. Pinard, A. Heidmann, Eur. Phys. J. D 22, 131 (2003)

    Article  ADS  Google Scholar 

  39. F.R. Blom, S. Bouwstra, M. Elwenspoek, J.H.J. Fluitman, J. Vac. Sci. Tech. B 10, 19 (1992)

    Article  Google Scholar 

  40. M. Bao, H. Yang, Sens. Act. A 136, 3 (2007)

    Article  Google Scholar 

  41. A. Cavalleri, G. Ciani, R. Dolesi, A. Heptonstall, M. Hueller, D. Nicolodi, S. Rowan, D. Tombolato, S. Vitale, P.J. Wass, W.J. Weber, Phys. Rev. Lett. 103, 140601 (2009)

    Article  ADS  Google Scholar 

  42. V. Yakhot, C. Colosqui, J. Fluid Mech. 586, 249 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. D.M. Karabacak, V. Yakhot, K.L. Ekinci, Phys. Rev. Lett. 98, 254505 (2007)

    Article  ADS  Google Scholar 

  44. S.S. Verbridge, R. Ilic, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 93, 013101 (2008b)

    Article  ADS  Google Scholar 

  45. S. Schlamminger, C.A. Hagedorn, J.H. Gundlach, Phys. Rev. D 81, 123008 (2010)

    Article  ADS  Google Scholar 

  46. C.H. Metzger, K. Karrai, Nature 432, 1002 (2004)

    Article  ADS  Google Scholar 

  47. S. De Liberato, N. Lambert, F. Nori, Phys. Rev. A 83, 033809 (2011)

    Article  ADS  Google Scholar 

  48. A. Schliesser, Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators. Ph.D. thesis, LMU Munich, 2010

    Google Scholar 

  49. O. Arcizet, R. Rivière, A. Schliesser, G. Anetsberger, T. Kippenberg, Phys. Rev. A 80, 021803(R) (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivishek Sudhir .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudhir, V. (2018). Experimental Platform: Cryogenic Near-Field Cavity Optomechanics. In: Quantum Limits on Measurement and Control of a Mechanical Oscillator. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69431-3_5

Download citation

Publish with us

Policies and ethics