Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 903 Accesses

Abstract

The need to observe a system precludes it form being in perfect isolation. Typical physical systems also exist in equilibrium with some thermal environment. Here we provide a unified description of a system in contact with a thermal environment, and a measurement device.

Here are some words which have no place in a formulation with any pretension to physical precision: system, apparatus, environment, microscopic, macroscopic, reversible, irreversible, observable, information, measurement.

John Bell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    It turns out that, on technical grounds, the framework of Hilbert space is too restrictive to realize the flexibility of Dirac’s formulation of quantum mechanics [3, 4]; here, we will however be satisfied with using the Dirac formalism rather than justifying each step of the usage rigorously.

  2. 2.

    A peculiarity of quantum mechanics is that although the value taken by each observable, for a fixed state, can be assumed to be drawn from a classical probability distribution (exhibited in Appendix A), there is generally no joint probability distribution for the values of a set of operators [6].

  3. 3.

    Attempts to formulate inequalities applicable to sequential measurements [13,14,15,16] give results very different from Eq. (2.1.2).

  4. 4.

    For positive real numbers xy, it is true that \(x+y \ge 2\sqrt{xy}\); this follows from the identity, \((\sqrt{x}-\sqrt{y})^2 \ge 0\).

  5. 5.

    There exists two, progressively finer, levels of description of the evolution of a quantum system in contact with an environment. The coarse description concerns itself with the time evolution of observables, and some of its statistics. The finer description addresses the question of how the quantum state itself changes. The former is subsumed by the latter in a variety of equivalent ways [19,20,21,22,23].

  6. 6.

    The normalisation warrants clarification: if the integrand were a classical Brownian process, its root-mean-square diverges as the square root of the observation window, i.e. as \(T^{1/2}\), which is checked by the normalisation. For a wide class of classical stochastic processes, a theorem due to Donsker [24] guarantees that the integral limits to a Brownian process (a “functional central limit theorem”)—the \(T^{-1/2}\) normalisation is necessary. This result from classical probability theory suffices to justify the normalisation.

  7. 7.

    Short for “symmetrised power spectral density”, by abuse of terminology.

  8. 8.

    Note that the notion of a continuous observable, as introduced here, is very different from that of a continuous variable used in the context of quantum information [35, 36]. The latter refers to hermitian operators (i.e. observables) whose eigenspectrum is continuous. The former, as used here, refers to time-dependent observables (with a continuous, or discrete, eigenspectrum) which can (in principle) be continuously monitored in time.

  9. 9.

    An outline of a proof is as follows (see [41] for the setup required to justify some of the steps). Assume then that there is some state \(\hat{\rho }\) for which all operators (not just observables) of the system satisfy Eq. (2.2.3); i.e. \(\langle {\hat{A}(t)\hat{B}(0)}\rangle =\langle {\hat{B}(0)\hat{A}(t+i\hbar \beta )}\rangle \), for all operators \(\hat{A},\hat{B}\). Time-translation invariance means that only the case \(t=0\) need to be considered, i.e., \(\langle {\hat{A}(0)\hat{B}(0)}\rangle =\langle {\hat{B}(0)\hat{A}(i\hbar \beta )}\rangle \,\, \forall \,\, \hat{A},\hat{B}\). Dropping the time argument and writing this out with the unknown state \(\hat{\rho }\) explicitly,

    $$\begin{aligned} \mathrm {Tr}[\hat{\rho }\hat{A}\hat{B}] =\mathrm {Tr}[\hat{\rho } \hat{B} e^{-\beta \hat{H}_0} \hat{A} e^{\beta \hat{H}_0}] \qquad \forall \, \hat{A},\hat{B}. \end{aligned}$$

    This can be expressed in two different ways. Firstly, since it applies for any \(\hat{A}\), it must also apply for \(\hat{A}=e^{\beta \hat{H}_0}\); in this case, \(\mathrm {Tr}[\hat{\rho }e^{\beta \hat{H}_0} \hat{B}] = \mathrm {Tr}[e^{\beta \hat{H}_0} \hat{\rho } \hat{B}]\,\, \forall \,\, \hat{B}\), implying that,

    $$\begin{aligned} \hat{\rho }e^{\beta \hat{H}_0} = e^{\beta \hat{H}_0}\hat{\rho }. \end{aligned}$$

    Secondly, permuting within the trace gives the alternate form, \(\mathrm {Tr}[\hat{B}\hat{\rho }\hat{A}] = \mathrm {Tr}[e^{\beta \hat{H}_0} \hat{\rho } \hat{B}e^{-\beta \hat{H}_0} \hat{A}]\,\, \forall \,\, \hat{A},\hat{B}\), implying that,

    $$\begin{aligned} \begin{aligned} \hat{B}\hat{\rho }&= e^{\beta \hat{H}_0} \hat{\rho } \hat{B}e^{-\beta \hat{H}_0} \\ \text{ i.e., }\quad \hat{B}\hat{\rho }e^{\beta \hat{H}_0}&= e^{\beta \hat{H}_0} \hat{\rho } \hat{B}\qquad \forall \, \hat{B}. \end{aligned} \end{aligned}$$

    Combining the results from the two forms gives,

    $$\begin{aligned} \hat{B}e^{\beta \hat{H}_0}\hat{\rho } = e^{\beta \hat{H}_0} \hat{\rho } \hat{B}\qquad \forall \, \hat{B}, \end{aligned}$$

    i.e. the operator \(e^{\beta \hat{H}_0} \hat{\rho }\) commutes with every operator in the Hilbert space. This means that it must be proportional to the identity operator, i.e. \(e^{\beta \hat{H}_0} \hat{\rho } \propto {1}\), or, \(\hat{\rho }\propto e^{-\beta \hat{H}_0}\). The normalization of the state fixes the proportionality constant.

  10. 10.

    This is because the meter is expected to output a classical record of the system observable being measured; this can only be arranged for if the states of the meter corresponding to the various values taken by the system observable are macroscopically distinguishable [50].

  11. 11.

    The most general linear relationship is of the form \(\hat{Y}(t)=\int f(t)\hat{X}(t-t')\, \mathrm {d}t'\), corresponding to a filtered version of the observable. However, without loss of generality, the filtering may be considered as happening on the classical measurement record, after the detector.

  12. 12.

    On the other hand, if it can be arranged that the observable \(\hat{X}\) already satisfies \([\hat{X}(t),\hat{X}(t')]= 0\), i.e. it is a continuous observable in the sense defined in Eq. (2.1.18), then there is in principle no additional contamination.

References

  1. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon Press, 1982)

    Google Scholar 

  2. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955)

    Google Scholar 

  3. J.E. Roberts, J. Math. Phys. 7, 1097 (1966)

    Article  ADS  Google Scholar 

  4. J.-P. Antoine, J. Math. Phys. 10, 53 (1969)

    Article  ADS  Google Scholar 

  5. E. Prugovečki, Quantum Mechanics in Hilbert Space (Academic Press, 1981)

    Google Scholar 

  6. A. Fine, J. Math. Phys. 23, 1306 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.P. Robertson, Phys. Rev. 46, 794 (1934)

    Article  ADS  Google Scholar 

  8. E. Schrödinger, Sitzungsberichte Preus. Akad. Wiss. 19, 296 (1930)

    Google Scholar 

  9. V.V. Dodonov, E.V. Kurmyshev, V.I. Man’ko, Phys. Lett. A 79, 150 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Heisenberg, Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  11. E.H. Kennard, Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  12. H. Weyl, Theory of Groups and Quantum Mechanics (Dover, 1932)

    Google Scholar 

  13. M. Ozawa, Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  14. P. Busch, T. Heinonen, P. Lahti, Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  15. T. Heinosaari, M.M. Wolf, J. Math. Phys. 51, 092201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Distler, S. Paban, Phys. Rev. A 87, 062112 (2013)

    Article  ADS  Google Scholar 

  17. V.S. Varadarajan, Comm. Pure Appl. Math. 15, 189 (1962)

    Article  MathSciNet  Google Scholar 

  18. C.M. Caves, Phys. Rev. D 26, 1817 (1982)

    Article  ADS  Google Scholar 

  19. C. Caves, G. Milburn, Phys. Rev. A 36, 5543 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  20. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, 1992)

    Google Scholar 

  21. A. Barchielli, Phys. Rev. A 34, 1642 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Barchielli, M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time (Springer, 2009)

    Google Scholar 

  23. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2010)

    Google Scholar 

  24. M.D. Donsker, Mem. Am. Math. Soc. 6, 12 (1951)

    Google Scholar 

  25. N. Wiener, Fourier Integrals and Certain of Its Applications (Cambridge University Press, 1933)

    Google Scholar 

  26. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  Google Scholar 

  27. G.B. Lesovik, R. Loosen, J. JETP Lett. 65 (1997)

    Google Scholar 

  28. U. Gavish, Y. Levinson, Y. Imry, Phys. Rev. B. 62, R10637 (2000)

    Article  ADS  Google Scholar 

  29. H. Eksteinand, N. Rostoker, Phys. Rev. 100, 1023 (1955)

    Article  ADS  Google Scholar 

  30. H.J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993)

    Google Scholar 

  31. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, 1998)

    Google Scholar 

  32. J. Eberly, K. Wodkiewicz, J. Opt. Soc. Am. 67, 1252 (1977)

    Article  ADS  Google Scholar 

  33. B. Mollow, Phys. Rev. 188, 1969 (1969)

    Article  ADS  Google Scholar 

  34. W.B. Davenport, W.L. Root, An Introduction to the Theory of Random Signals and Noise (Wiley-IEEE, 1987)

    Google Scholar 

  35. S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  36. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  37. C.M. Caves, M. Zimmermann, K.S. Thorne, R.W. Drever, Rev. Mod. Phys. 52, 341 (1980)

    Article  ADS  Google Scholar 

  38. V.B. Braginsky, Y.I. Vorontsov, K.S. Thorne, Science 209, 547 (1980)

    Article  ADS  Google Scholar 

  39. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Haag, N.M. Hugenholtz, M. Winnink, Comm. Math. Phys. 5, 215 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  42. E.B. Davies, Quantum Theory of Open Systems (Academic Press, 1976)

    Google Scholar 

  43. W. Bernard, H. Callen, Rev. Mod. Phys. 31, 1017 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  44. N. Pottier, Nonequilibrium Statistical Physics (Oxford University Press, 2014)

    Google Scholar 

  45. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  46. L.P. Kadanoff, P.C. Martin, Ann. Phys. 24, 419 (1963)

    Article  ADS  Google Scholar 

  47. D. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  ADS  Google Scholar 

  48. T. Dittrich, P. Hanggi, G.-L. Ingold, B. Kramer, G. Schön, W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, 1998)

    Google Scholar 

  49. Y. Nazarov (ed.), Quantum Noise in Mesoscopic Physics (Springer, 2002)

    Google Scholar 

  50. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  51. R.J. Glauber, Ann. NY Acad. Sci. 480, 336 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Arthurs, J. Kelly, Bell. Sys. Tech. J. 44, 725 (1965)

    Article  Google Scholar 

  53. C.Y. She, H. Heffner, Phys. Rev. 152, 1103 (1966)

    Article  ADS  Google Scholar 

  54. H.P. Yuen, Phys. Lett. A 91, 101 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Shapiro, S. Wagner, IEEE. J. Quant. Elec. 20, 803 (1984)

    Article  ADS  Google Scholar 

  56. U. Leonhardt, H. Paul, J. Mod. Opt. 40, 1745 (1993)

    Article  ADS  Google Scholar 

  57. A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gürsel, S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, M.E. Zucker, Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  58. C.M. Caves, Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  59. M. Jaekel, S. Reynaud, Europhys. Lett. 13, 301 (1990)

    Article  ADS  Google Scholar 

  60. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  61. A. Buonanno, Y. Chen, Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivishek Sudhir .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudhir, V. (2018). Quantum Fluctuations in Linear Systems. In: Quantum Limits on Measurement and Control of a Mechanical Oscillator. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69431-3_2

Download citation

Publish with us

Policies and ethics