Skip to main content

Estimating Parameters in Complex Systems with Functional Outputs: A Wavelet-Based Approximate Bayesian Computation Approach

  • Chapter
  • First Online:
New Advances in Statistics and Data Science

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 1719 Accesses

Abstract

We consider a family of parameter estimation problems involving functional data. In these problems, the relationship between functional data and the underlying parameters cannot be explicitly specified using a likelihood function. These situations often occur when functional data arises from a complex system and only numerical simulations (through a simulator) can be used to describe the underlying data-generating mechanism. To estimate the unknown parameters under these scenarios, we introduce a wavelet-based approximate Bayesian computation (wABC) approach that is likelihood-free and computationally scalable to functional data measured on a dense, high-dimensional grid. The proposed approach relies on near-lossless wavelet decomposition and compression to reduce the high-correlation between measurement points and the high-dimensionality. We adopt a Markov chain Monte Carlo algorithm with a Metropolis-Hastings sampler to obtain posterior samples of the parameters for Bayesian inference. To avoid expensive simulations from the simulator in the approximate Bayesian computation, a Gaussian process surrogate for the simulator is introduced, and the uncertainty of the resulting sampler is controlled by calculating the expected error rate of the acceptance probability. We motivate our approach and demonstrate its performance using the foliage-echo data generated by a sonar simulation system. Our Bayesian posterior inference provides the joint posterior distribution of all underlying parameters, which is otherwise intractable using existing analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Hongxiao Zhu and Ruijin Lu contributed equally to this work.

References

  • Adelman, R., Gumerov, N. A., & Duraiswami, R. (2014). Software for computing the spheroidal wave functions using arbitrary precision arithmetic. CoRR. http://arxiv.org/abs/1408.0074

  • Bowman, J., Senior, T., & Uslenghi, P. (1987). Electromagnetic and acoustic scattering by simple shapes. New York: Hemisphere Publishing Corporation.

    Google Scholar 

  • Cardot, H. (2005). Nonparametric regression for functional responses with application to conditional functional principle component analysis. http://www.lsp.ups-tlse.fr/Recherche/Publications/2005/car01.pdf

    Google Scholar 

  • Chiou, J., Müller, H., & Wang, J. (2003). Functional quasi-likelihood regression models with smooth random effects. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, 405–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Didelot, X., Everitt, R. G., Johansen, A. M., & Lawson, D. J. (2011). Likelihood-free estimation of model evidence. Bayesian Analysis, 6(1), 49–76. https://doi.org/10.1214/11-BA602

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis. New York, Springer.

    MATH  Google Scholar 

  • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Bayesian Statistics, 4, 169–193.

    MathSciNet  Google Scholar 

  • Gramacy, R. B., & Apley, D. W. (2015). Local gaussian process approximation for large computer experiments. Journal of Computational and Graphical Statistics, 24(2), 561–578.

    Article  MathSciNet  Google Scholar 

  • Gramacy, R. B., & Haaland, B. (2014). Speeding up neighborhood search in local Gaussian process prediction. ArXiv e-prints.

    Google Scholar 

  • Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. New York: Springer.

    Book  MATH  Google Scholar 

  • Korattikara, A. B., Chen, Y., & Welling, M. (2014). Austerity in MCMC land: Cutting the Metropolis-Hastings budget. In Proceedings of the 31st International Conference on Machine Learning, Cycle 1, JMLR Proceedings (Vol. 32, pp. 181–189). JMLR.org.

    Google Scholar 

  • Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Lu, T., Liang, H., Li, H., & Wu, H. (2011). High dimensional odes coupled with mixed-effects modeling techniques for dynamic gene regulatory network identification. Journal of the American Statistical Association, 106(496), 1242–1258.

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, J. M., Pudlo, P., Robert, C. P. R., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

    Article  MathSciNet  MATH  Google Scholar 

  • Meeds, E., & Welling, M. (2014). GPS-ABC: Gaussian process surrogate approximate Bayesian computation. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI).

    Google Scholar 

  • Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 2, 321–359.

    Article  Google Scholar 

  • Pritchard, J.K., Seielstad, M. T., Perez-Lezaun, A., Feldman, M. W. (1999). Population growth of human Y chromosomes: A study of y chromosome microsatellites. Molecular Biology and Evolution, 16, 1791–1798.

    Article  Google Scholar 

  • Ramsay, J. O., & Li, X. (1998). Curve registration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 351–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (1997). Functional data analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Ramsay, J. O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(5), 741–796.

    Article  MathSciNet  Google Scholar 

  • Rice, J. A., & Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53, 233–243.

    MathSciNet  MATH  Google Scholar 

  • Sadegh, M., & Vrugt, J. A. (2014). Approximate Bayesian computation using Markov chain monte carlo simulation: Dream(abc). Water Resources Research, 50(8), 6767–6787. https://doi.org/10.1002/2014WR015386

    Article  Google Scholar 

  • Sanders, J., & Kandrot, E. (2010). CUDA by example: An introduction to general-purpose GPU programming (1st ed.). Boston, MA: Addison-Wesley Professional.

    Google Scholar 

  • Scheipl, F., Staicu, A. M., & Greven, S. (2014). Functional additive mixed models. Journal of Computational and Graphical Statistics, 24, 477–501.

    Article  MathSciNet  Google Scholar 

  • Tang, R., & Müller, H. G. (2008). Pairwise curve synchronization for functional data. Biometrika, 95(4), 875.

    Article  MathSciNet  MATH  Google Scholar 

  • Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 56, 69–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Vanderelst, D., Steckel, J., Boen, A., Peremans, H., & Holderied, M. W. (2016). Place recognition using batlike sonar. eLife, 5, e14188. https://doi.org/10.7554/eLife.14188

    Article  Google Scholar 

  • Vaughan, N., Jones, G., & Harris, S. (1997). Identification of british bat species by multivariate analysis of echolocation call parameters. Bioacoustics, 7(3), 189–207.

    Article  Google Scholar 

  • Wang, J.-L., Chiou, J.-M., & Ml̈ler, H. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3, 257–295.

    Google Scholar 

  • Wegmann, D., Leuenberger, C., & Excoffier, L. (2009). Efficient approximate Bayesian computation coupled with markov chain monte carlo without likelihood. Genetics, 182(4), 1207–1218. https://doi.org/10.1534/genetics.109.102509

    Article  Google Scholar 

  • Wikipedia (2017). Sonar — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Sonar. Accessed 20 May 2017.

  • Xun, X., Cao, J., Mallick, B., Maity, A., & Carroll, R. J. (2013). Parameter estimation of partial differential equation models. Journal of the American Statistical Association, 108(503), 1009–1020.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J., Zhu, H., Choi, T., & Cox, D. D. (2016). Smoothing and mean-covariance estimation of functional data with a Bayesian hierarchical model. Bayesian Analysis, 11(3), 649–670.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577–590.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Cao, J., & Carroll, R. J. (2017). Estimating varying coefficients for partial differential equation models. Biometrics, 73(3), 949–959. ISSN: 1541–0420. http://dx.doi.org/10.1111/biom.12646

  • Zhu, H., Brown, P. J., & Morris, J. S. (2011). Robust, adaptive functional regression in functional mixed model framework. Journal of the American Statistical Association, 495, 1167–1179.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxiao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, H., Lu, R., Ming, C., Gupta, A.K., Müller, R. (2017). Estimating Parameters in Complex Systems with Functional Outputs: A Wavelet-Based Approximate Bayesian Computation Approach. In: Chen, DG., Jin, Z., Li, G., Li, Y., Liu, A., Zhao, Y. (eds) New Advances in Statistics and Data Science. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-69416-0_9

Download citation

Publish with us

Policies and ethics