Skip to main content

Adaptive Filtering Increases Power to Detect Differentially Expressed Genes

  • Chapter
  • First Online:
New Advances in Statistics and Data Science

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 1682 Accesses

Abstract

Detecting differentially expressed genes is difficult due to the large number of genes simultaneously tested, resulting in low power for each test after adjusting for multiplicity. We propose a novel adaptive filtering procedure that improves power by filtering out genes that are unlikely to be differentially expressed. We show that the proposed procedure controls the false discovery rate asymptotically. Simulation study further demonstrate its advantage over the state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benidt, S., & Nettleton, D. (2015). Simseq: A nonparametric approach to simulation of rna-sequence datasets. Bioinformatics, 31(13), 2131–2140.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    MathSciNet  MATH  Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard, G., & Roquain, E. (2009). Adaptive false discovery rate control under independence and dependence. Journal of Machine Learning Research, 10, 2837–2871.

    MathSciNet  MATH  Google Scholar 

  • Bourgon, R., Gentleman, R., & Huber, W. (2010). Independent filtering increases detection power for high-throughput experiments. Proceedings of the National Academy of Sciences, 107(21), 9546–9551.

    Article  Google Scholar 

  • Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F., et al. (2004). Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood, 103(7), 2771–2778.

    Article  Google Scholar 

  • Dudoit, S., Shaffer, J. P., & Boldrick, J. C. (2003). Multiple hypothesis testing in microarray experiments. Statistical Science, 18, 71–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Farcomeni, A., & Finos, L. (2013). FDR control with pseudo-gatekeeping based on a possibly data driven order of the hypotheses. Biometrics, 69(3), 606–613.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbert, P. B. (2005). A modified false discovery rate multiple-comparisons procedure for discrete data, applied to human immunodeficiency virus genetics. Journal of the Royal Statistical Society: Series C, 54(1), 143–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Hackstadt, A. J., & Hess, A. M. (2009). Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10(1), 11.

    Article  Google Scholar 

  • Ignatiadis, N., Klaus, B., Zaugg, J. B., & Huber, W. (2016). Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods, 13(7), 577–580.

    Article  Google Scholar 

  • Kerr, M. K., Martin, M., & Churchill, G. A. (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7(6), 819–837.

    Article  Google Scholar 

  • Liang, K., & KeleÅŸ, S. (2012). Detecting differential binding of transcription factors with ChIP-seq. Bioinformatics, 28(1), 121–122.

    Article  Google Scholar 

  • Liang, K., & Nettleton, D. (2010). A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. Journal of the American Statistical Association, 105(492), 1444–1454.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, K., & Nettleton, D. (2012). Adaptive and dynamic adaptive procedures for false discovery rate control and estimation. Journal of the Royal Statistical Society: Series B, 74(1), 163–182.

    Article  MathSciNet  Google Scholar 

  • Nettleton, D., Recknor, J., & Reecy, J. M. (2008). Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics, 24(2), 192–201.

    Article  Google Scholar 

  • Scholtens, D., & Von Heydebreck, A. (2005). Analysis of differential gene expression studies. In Bioinformatics and computational biology solutions using R and Bioconductor (pp. 229–248). New York: Springer.

    Chapter  Google Scholar 

  • Smyth, G. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Storey, J. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B, 64(3), 479–498.

    Article  MathSciNet  MATH  Google Scholar 

  • Strimmer, K. (2008). Fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24(12), 1461–1462.

    Article  Google Scholar 

Download references

Acknowledgements

Kun Liang is supported by Canada NSERC grant 435666-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nie, Z., Liang, K. (2017). Adaptive Filtering Increases Power to Detect Differentially Expressed Genes. In: Chen, DG., Jin, Z., Li, G., Li, Y., Liu, A., Zhao, Y. (eds) New Advances in Statistics and Data Science. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-69416-0_8

Download citation

Publish with us

Policies and ethics