Skip to main content

Landmark-Constrained Statistical Shape Analysis of Elastic Curves and Surfaces

  • Chapter
  • First Online:
New Advances in Statistics and Data Science

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 1722 Accesses

Abstract

We present a framework for landmark-constrained elastic shape analysis of curves and surfaces. While most of statistical shape analysis focuses on either landmark-based or curve-based representations, we describe a new approach that is able to unify them. The described method has its roots in elastic shape analysis, where elastic metrics are used for comparisons and statistical analysis of shapes. The landmark information is incorporated into the shape representation via hard constraints in the re-parameterization group. We use the square-root velocity function representation for curves and square-root normal field representation for surfaces to greatly simplify the implementation of these methods. We give multiple complex examples from graphics and computer vision, wherein the landmark-constrained shape analysis framework is able to provide natural deformations between shapes as well as representative summaries, including the average and principal directions of variability, of samples of shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.dabi.temple.edu/~shape/MPEG7/dataset.html.

References

  • Almhdie, A., Léger, C., Deriche, M., & Lédée, R. (2007). 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters, 28(12), 1523–1533.

    Article  Google Scholar 

  • Beg, M., Miller, M., Trouvé A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Bhattacharya, A. (2008). Statistical analysis on manifolds: A nonparametric approach for inference on shape spaces. Sankhya: The Indian Journal of Statistics, 70-A(Part 2), 223–266.

    Google Scholar 

  • Bhattacharya, A., & Bhattacharya, R. (2012). Nonparametric inference on manifolds with applications to shape spaces. IMS monograph. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bhattacharya, R., & Lin, L. (2017). Omnibus CLTs for Frechet means and nonparametric inference on non-Euclidean spaces. Proceedings of the American Mathematical Society, 145, 413–428.

    Google Scholar 

  • Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1(2), 181–222.

    Article  MATH  Google Scholar 

  • Bouix, S., Pruessner, J., Collins, D., & Siddiqi, K. (2001). Hippocampal shape analysis using medial surfaces. NEUROIMAGE, 25, 1077–1089.

    Article  MATH  Google Scholar 

  • Brechbühler, C., Gerig, G., & Kübler, O. (1995). Parameterization of closed surfaces for 3D shape description. Computer Vision and Image Understanding, 61(2), 154–170.

    Article  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2008). Numerical geometry of non-rigid shapes. New York: Springer.

    MATH  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1992). Size and shape analysis of landmark data. Biometrika, 79(1), 57–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.

    MATH  Google Scholar 

  • Girogi, D., Biasotti, S., & Oaraboschi, L. (2007). Shape retrieval contest 2007: Watertight models track. In Proceedings of Computer Graphics Forum.

    Google Scholar 

  • Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., et al. (2010). Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 652–666.

    Article  Google Scholar 

  • Grenander, U., & Miller, M. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694.

    Google Scholar 

  • Jermyn, I. H., Kurtek, S., Klassen, E., & Srivastava, A. (2012). Elastic shape matching of parameterized surfaces using square root normal fields. In Proceedings of European Conference on Computer Vision (pp. 804–817).

    Google Scholar 

  • Joshi, S., Miller, M., & Grenander, U. (1997). On the geometry and shape of brain sub-manifolds. Pattern Recognition and Artificial Intelligence, 11, 1317–1343.

    Article  Google Scholar 

  • Joshi, S. H., Klassen, E., Srivastava, A., & Jermyn, I. H. (2007). A novel representation for Riemannian analysis of elastic curves in \(\mathbb {R}^n\). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–7).

    Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective shapes. Bulletin of London Mathematical Society, 16, 81–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Klassen, E., & Srivastava, A. (2006). Geodesics between 3D closed curves using path-straightening. In Proceedings of ECCV. Lecture Notes in Computer Science (pp. I:95–106). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Klassen, E., Srivastava, A., Mio, W., & Joshi, S. H. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 372–383.

    Article  Google Scholar 

  • Kurtek, S., Klassen, E., Ding, Z., Avison, M. J., & Srivastava, A. (2011a). Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In Proceedings of Information Processing in Medical Imaging.

    Google Scholar 

  • Kurtek, S., Klassen, E., Ding, Z., Jacobson, S. W., Jacobson, J. L., Avison, M. J., et al. (2011b). Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Transactions on Medical Imaging, 30(3), 849–858.

    Article  Google Scholar 

  • Kurtek, S., Klassen, E., Ding, Z., & Srivastava, A. (2010). A novel Riemannian framework for shape analysis of 3D objects. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1625–1632).

    Google Scholar 

  • Kurtek, S., Klassen, E., Gore, J. C., Ding, Z., Srivastava, A. (2012a). Elastic geodesic paths in shape space of parameterized surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1717–1730.

    Article  Google Scholar 

  • Kurtek, S., Srivastava, A., Klassen, E., & Ding, Z. (2012b). Statistical modeling of curves using shapes and related features. Journal of the American Statistical Association, 107(499), 1152–1165.

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtek, S., Srivastava, A., Klassen, E., & Laga, H. (2013a). Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Computer Graphics Forum (Proceedings of Eurographics), 32(2), 429–438.

    Article  Google Scholar 

  • Kurtek, S., Su, J., Grimm, C., Vaughan, M., Sowell, R. T., & Srivastava, A. (2013b). Statistical analysis of manual segmentations of structures in medical images. Computer Vision and Image Understanding, 117(9), 1036–1050.

    Article  Google Scholar 

  • Kurtek, S., Xie, Q., Samir, C., & Canis, M. (2016). Statistical model for simulation of deformable elastic endometrial tissue shapes. Neurocomputing, 173(P1), 36–41.

    Article  Google Scholar 

  • Laga, H., Xie, Q., Jermyn, I. H., & Srivastava, A. (2017, in press). Numerical inversion of SRNF maps for elastic shape analysis of genus-zero surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. arXiv:1610.04531v1.

    Google Scholar 

  • Le, H. (2001). Locating Frechet means with application to shape spaces. Advances in Applied Probability, 33(2), 324–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W., Srivastava, A., & Zhang, J. (2010). Protein structure alignment using elastic shape analysis. In Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology (pp. 62–70).

    Google Scholar 

  • Malladi, R., Sethian, J. A., & Vemuri, B. C. (1996). A fast level set based algorithm for topology-independent shape modeling. Journal of Mathematical Imaging and Vision, 6, 269–290.

    Article  MathSciNet  Google Scholar 

  • Mio, W., Srivastava, A., & Joshi, S. H. (2007). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307–324.

    Article  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer series in statistics. New York: Springer.

    Google Scholar 

  • Robinson, D. T. (2012). Functional data analysis and partial shape matching in the square root velocity framework. Ph.D. thesis, Florida State University.

    Google Scholar 

  • Samir, C., Kurtek, S., Srivastava, A., & Canis, M. (2014). Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization. IEEE Transactions on Medical Imaging, 33(5), 1035–1043.

    Article  Google Scholar 

  • Small, C. G. (1996). The statistical theory of shape. New York: Springer.

    Book  MATH  Google Scholar 

  • Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1415–1428.

    Article  Google Scholar 

  • Strait, J., Kurtek, S., Bartha, E., & MacEachern, S. N. (2017). Landmark-constrained elastic shape analysis of planar curves. Journal of the American Statistical Association, 112(518), 521–533.

    Article  MathSciNet  Google Scholar 

  • Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., et al. (2006). Framework for the statistical shape analysis of brain structures using SPHARM-PDM. In Proceedings of MICCAI Open Science Workshop.

    Google Scholar 

  • Xie, Q., Jermyn, I. H., Kurtek, S., & Srivastava, A. (2014). Numerical inversion of SRNFs for efficient elastic shape analysis of star-shaped objects. In European Conference on Computer Vision (pp. 485–499).

    Google Scholar 

  • Xie, Q., Kurtek, S., Le, H., & Srivastava, A. (2013). Transport of deformations along paths in shape space of elastic surfaces. In Proceedings of International Conference on Computer Vision.

    Google Scholar 

  • Younes, L. (1998). Computable elastic distance between shapes. SIAM Journal of Applied Mathematics, 58(2), 565–586.

    Article  MathSciNet  MATH  Google Scholar 

  • Younes, L., Michor, P. W., Shah, J., Mumford, D., & Lincei, R. (2008). A metric on shape space with explicit geodesics. Matematica E Applicazioni, 19(1), 25–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Zahn, C. T., & Roskies, R. Z. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 21(3), 269–281.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Hamid Laga (Murdoch University) for providing the spherically parameterized meshes for the TOSCA and SHREC 2007 datasets. This research was partially supported by NSF DMS 1613054 (SK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Strait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strait, J., Kurtek, S. (2017). Landmark-Constrained Statistical Shape Analysis of Elastic Curves and Surfaces. In: Chen, DG., Jin, Z., Li, G., Li, Y., Liu, A., Zhao, Y. (eds) New Advances in Statistics and Data Science. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-69416-0_12

Download citation

Publish with us

Policies and ethics