Skip to main content

A GRASP for the Minimum Cost SAT Problem

  • Conference paper
  • First Online:
Book cover Learning and Intelligent Optimization (LION 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10556))

Included in the following conference series:

Abstract

A substantial connection exists between supervised learning from data represented in logic form and the solution of the Minimum Cost Satisfiability Problem (MinCostSAT). Methods based on such connection have been developed and successfully applied in many contexts. The deployment of such methods to large-scale learning problem is often hindered by the computational challenge of solving MinCostSAT, a problem well known to be NP-complete. In this paper, we propose a GRASP-based metaheuristic designed for such problem, that proves successful in leveraging the very distinctive structure of the MinCostSAT problems arising in supervised learning. The algorithm is equipped with an original stopping criterion based on probabilistic assumptions which results very effective for deciding when the search space has been explored enough. Although the proposed solver may approach MinCostSAT of general form, in this paper we limit our analysis to some instances that have been created from artificial supervised learning problems, and show that our method outperforms more general purpose well established solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For missing values, the algorithm was not able to find the optimal solution in 24 h.

References

  1. Arisi, I., D’Onofrio, M., Brandi, R., Felsani, A., Capsoni, S., Drovandi, G., Felici, G., Weitschek, E., Bertolazzi, P., Cattaneo, A.: Gene expression biomarkers in the brain of a mouse model for alzheimer’s disease: Mining of microarray data by logic classification and feature selection. J. Alzheimer’s Dis. 24(4), 721–738 (2011)

    Google Scholar 

  2. Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., Weitschek, E.: Integer programming models for feature selection: new extensions and a randomized solution algorithm. Eur. J. Oper. Res. 250(2), 389–399 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertolazzi, P., Felici, G., Weitschek, E.: Learning to classify species with barcodes. BMC Bioinform. 10(14), S7 (2009)

    Article  Google Scholar 

  4. Cestarelli, V., Fiscon, G., Felici, G., Bertolazzi, P., Weitschek, E.: CAMUR: knowledge extraction from RNA-seq cancer data through equivalent classification rules. Bioinformatics 32(5), 697–704 (2016)

    Article  Google Scholar 

  5. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2, 1–26 (2006)

    MATH  Google Scholar 

  6. Felici, G., Truemper, K.: A minsat approach for learning in logic domains. INFORMS J. Comput. 14(1), 20–36 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2), 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part I: algorithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - part II: applications. Int. Trans. Oper. Res. 16(2), 131–172 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fu, Z., Malik, S.: Solving the minimum-cost satisfiability problem using SAT based branch-and-bound search. In: 2006 IEEE/ACM International Conference on Computer Aided Design, pp. 852–859, November 2006

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman, New York (2002)

    Google Scholar 

  12. Manquinho, V.M., Marques-Silva, J.P.: Search pruning techniques in SAT-based branch-and-bound algorithms for the binate covering problem. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 21(5), 505–516 (2002)

    Article  Google Scholar 

  13. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: Ninth IEEE International Conference on Tools with Artificial Intelligence, 1997 Proceedings, pp. 232–239. IEEE (1997)

    Google Scholar 

  14. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  15. Martins, R., Manquinho, V., Lynce, I.: Clause sharing in deterministic parallel maximum satisfiability. In: RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (2012)

    Google Scholar 

  16. Martins, R., Manquinho, V.M., Lynce, I.: Clause sharing in parallel MaxSAT. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 455–460. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_44

    Chapter  Google Scholar 

  17. Martins, R., Manquinho, V.M., Lynce, I.: Parallel search for maximum satisfiability. AI Commun. 25(2), 75–95 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

    Google Scholar 

  19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  20. Pipponzi, M., Somenzi, F.: An iterative algorithm for the binate covering problem. In: Proceedings of the European Design Automation Conference, EDAC 1990, pp. 208–211, March 1990

    Google Scholar 

  21. Ribeiro, C.C., Rosseti, I., Souza, R.C.: Probabilistic stopping rules for GRASP heuristics and extensions. Int. Trans. Oper. Res. 20(3), 301–323 (2013)

    Article  MATH  Google Scholar 

  22. Scholz, F.W.: Maximum likelihood estimation (2004)

    Google Scholar 

  23. Servit, M., Zamazal, J.: Heuristic approach to binate covering problem. In: Proceedings The European Conference on Design Automation, pp. 123–129, March 1992

    Google Scholar 

  24. Sorensson, N., Een, N.: Minisat v1.13 - a sat solver with conflict-clause minimization. Technical report (2005(53))

    Google Scholar 

  25. Truemper, K.: Design of Logic-Based Intelligent Systems. Wiley-Interscience Publication, Wiley (2004)

    Book  MATH  Google Scholar 

  26. Villa, T., Kam, T., Brayton, R.K., Sangiovanni-Vincenteili, A.L.: Explicit and implicit algorithms for binate covering problems. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 16(7), 677–691 (1997)

    Article  Google Scholar 

  27. Weitschek, E., Felici, G., Bertolazzi, P.: MALA: a microarray clustering and classification software. In: 2012 23rd International Workshop on Database and Expert Systems Applications, pp. 201–205, September 2012

    Google Scholar 

  28. Weitschek, E., Fiscon, G., Felici, G.: Supervised DNA barcodes species classification: analysis, comparisons and results. BioData Min. 7(1), 4 (2014)

    Article  Google Scholar 

  29. Weitschek, E., Lo Presti, A., Drovandi, G., Felici, G., Ciccozzi, M., Ciotti, M., Bertolazzi, P.: Human polyomaviruses identification by logic mining techniques. Virol. J. 9(1), 58 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been realized thanks to the use of the S.Co.P.E. computing infrastructure at the University of Napoli FEDERICO II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Festa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Felici, G., Ferone, D., Festa, P., Napoletano, A., Pastore, T. (2017). A GRASP for the Minimum Cost SAT Problem. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69404-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69403-0

  • Online ISBN: 978-3-319-69404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics