Using Life Cycle Assessment to Facilitate Energy Mix Planning in the Galapagos Islands

  • Eduard Cubi
  • Joule BergersonEmail author
  • Anil Mehrotra
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI)


Life cycle assessment (LCA) is used in this chapter to compare the environmental impacts and economic viability of alternatives to diesel fuel shipments to the Galapagos Islands. Two alternative energy mix options are analysed and compared on GHG emissions with current diesel and gasoline imports using LCA. Results suggest that Jatropha biodiesel has the lowest GHG emission potential. However there is a lack of available data specific to LCA related to environmental, social and economic factors which currently limit the potential of LCA for decision-support.


  1. Abrahams LS, Samaras C, Griffin WM, Matthews HS (2015) Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses. Environ Sci Technol 49:3237–3245CrossRefGoogle Scholar
  2. Carrion GC (2007) Estudio de prevision de la demanda de energia para las Islas Galapagos: escenarios socioeconomicos. Available from:
  3. Cynthia O-B, Teong LK (2011) Feasibility of Jatropha oil for biodiesel: economic analysis. In: World renewable energy congress, LinkopingGoogle Scholar
  4. Deutscher Entwicklungsdienst, Vereinigte Werkstätten für Pflanzenöltechnologie (2008) Energia Renovable para Galapagos. Sustitucion de combustibles fosiles por biocombustibles en la generacion de energia electrica en la Isla Floreana. Available from:
  5. Economides MJ (2005) The economics of gas to liquids compared to liquefied natural gas. World Energy 8:136–140Google Scholar
  6. Energy Information Administration (2003) The global liquefied natural gas market: status and outlook. Available from:
  7. Energy Information Administration (2014) Ecuador—overview. Available from:
  8. EnerSea Transport LLC (2015) Understanding CNG [Internet]. Available from:
  9. Forman GS, Hahn TE, Jensen SD (2011) Greenhouse gas emission evaluation of the GTL pathway. Environ Sci Technol 45:9084–9092CrossRefGoogle Scholar
  10. Hasan MMF, Zheng AM, Karimi IA (2009) Minimizing boil-off losses in liquefied natural gas transportation. Ind Eng Chem Res 48:9571–9580CrossRefGoogle Scholar
  11. Hecht J (2002) Galapagos oil spill devastated marine iguanas. New ScientistGoogle Scholar
  12. International Organization for Standardization (2010) ISO 14042:2000 Environmental management—Life Cycle Assessment—Life Cycle Impact AssessmentGoogle Scholar
  13. Jaramillo P, Griffin WM, Matthews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41:6290–6296CrossRefGoogle Scholar
  14. Koh MY, Mohd. Ghazi TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energ Rev 15:2240–2251CrossRefGoogle Scholar
  15. Leduc S, Natarajan K, Dotzauer E, McCallum I, Obersteiner M (2009) Optimizing biodiesel production in India. Appl Energy 86(Suppl 1):S125–SS31CrossRefGoogle Scholar
  16. Lewis G (2013) The struggle for sustainable energy on Galapagos. Galapagos DigitalGoogle Scholar
  17. Lewis G, Galapaface AC (2014) I: challenges in salvage effort. Galapagos DigitalGoogle Scholar
  18. Ministerio de Electricidad y Energia Renovable, United Nations Development Program, Global Environmental Facility, Consejo Nacional de Electricidad (2015) ERGAL—Energias Renovables para Galapagos [Internet]. Available from:
  19. Natural Resources Canada (2014) GHGenius. A model for lifecycle assessment of transportation fuelsGoogle Scholar
  20. Sandia National Laboratories (2004) Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water. Available from:
  21. SeaNG—Coselle (2015) Compressed natural gas—demand customers [Internet]. Available from:
  22. US Department of Energy (2005) Liquefied natural gas: understanding the basic facts. Available from:
  23. US Environmental Protection Agency (2004) Unit conversions, emissions factors, and other reference data. Available from:
  24. Von Wedel R (1999) Technical handbook for marine biodiesel. In Recreational boats, 2nd edition, Cytoculture international, Point Richmond, CAGoogle Scholar
  25. Whitaker M, Heath G (2009) Life cycle assessment of the use of Jatropha biodiesel in Indian locomotives. Available from:

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Energy and Environment Systems Group (EESG), Centre for Environmental Engineering Research and Education (CEERE), Department of Chemical and Petroleum EngineeringSchulich School of Engineering, University of CalgaryCalgaryCanada

Personalised recommendations