Advertisement

Classes of CPs: Part 1

  • Prasanna Chandrasekhar
Chapter

Abstract

In this and the next chapter, we discuss each group or class of CPs in turn, starting with the poly(acetylenes). Much emphasis is placed on synthetic aspects, as properties and other aspects of the CPs are covered elsewhere in this book. Within this limited purview, more emphasis is placed further on giving more detail for the less well-known or less well-studied CPs, rather than the more studied ones such as P(ANi) and P(Ac).

Literature Cited

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991). Bibcode:1991Natur.354...56I. doi: https://doi.org/10.1038/354056a0
  2. 2.
    Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1365 (2004). Bibcode:2004Sci...306.1362H. doi: https://doi.org/10.1126/science.1104962. PMID 15550668
  3. 3.
    Iijima, S.: High resolution electron microscopy of some carbonaceous materials. J. Microsc. 119(1), 99–111 (1980)CrossRefGoogle Scholar
  4. 4.
    Радушкевич, Л.В.: О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте. Журнал Физической Химии. 26, 88–95 (1952) (in Russian). (see http://nanotube.msu.edu/HSS/2006/4/2006-4.pdf)
  5. 5.
    Schützenberger, P., Schützenberger, L.: C. R. Acad. Sci. 111, 774–780 (1890)Google Scholar
  6. 6.
    Oberlin, A., Endo, M., Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth. 32(3), 335–349 (1976). Bibcode:1976JCrGr..32..335O. doi: https://doi.org/10.1016/0022-0248(76)90115-9
  7. 7.
    Baker, R.T.K., Harris, P.S.: The formation of filamentous carbon. Chem. Phys. Carbon. 14, 83–165 (1978)Google Scholar
  8. 8.
    Abrahamson, J., Wiles, P.G., Rhoades, B.L.: Structure of carbon fibers found on carbon arc anodes. Carbon. 37(11), 1873–1874 (1999). https://doi.org/10.1016/S0008-6223(99)00199-2 CrossRefGoogle Scholar
  9. 9.
    Izvestiya Akademii Nauk SSSR. Metals. 3, 12–17 (1982)Google Scholar
  10. 10.
    Tennent, H.G.: Carbon fibrils, method for producing same and compositions containing same (1987)Google Scholar
  11. 11.
    Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature. 358, 220–222 (1992)CrossRefGoogle Scholar
  12. 12.
    Mintmire, J.W., Dunlap, B.I., White, C.T.: Are fullerene tubules metallic? Phys. Reve. Lett. 68, 631–634 (1992)CrossRefGoogle Scholar
  13. 13.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Carbon fibers based on C60 and their symmetry. Phys. Rev B Condens Matter. 45, 6234–6242 (1992)CrossRefGoogle Scholar
  14. 14.
    Jones, D.E.H.: New Sci. 110, 1505 (1986)Google Scholar
  15. 15.
    Ajayan, P.M.: Nanotubes from Carbon. Chem. Rev. 99(7), 1787–1800 (1999)CrossRefGoogle Scholar
  16. 16.
    Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature. 386, 474–477 (1997)CrossRefGoogle Scholar
  17. 17.
    Terrones, M.: Science and technology of the twenty-first century: synthesis, properties, and applications of carbon banotubes. Annu. Rev. Mater.Res. 33, 419–501 (2003)CrossRefGoogle Scholar
  18. 18.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science. 339(535), 535–539 (2013)CrossRefGoogle Scholar
  19. 19.
    Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small. 2, 180–192 (2005)CrossRefGoogle Scholar
  20. 20.
    Hu, H., Bhowmik, P., Zhao, B., Hamon, M.A., Itkis, M.E., Haddon, R.C.: Chem. Phys. Lett. 108(4), 227 (2006)Google Scholar
  21. 21.
    Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R., Ando, Y.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004). Bibcode:2004PhRvL..92l5502Z. doi: https://doi.org/10.1103/PhysRevLett.92.125502. PMID 15089683
  22. 22.
    Zhang, R., Zhang, Y., Zhang, Q., Xie, H., Qian, W., Wei, F.: Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano. 7(7), 6156–6161 (2003). https://doi.org/10.1021/nn401995z. PMID 23806050 CrossRefGoogle Scholar
  23. 23.
    Davenport, M.: Twist and shouts: a nanotube story. Chem. Eng. News. 93(23), 10–15 (2016.) Ouyang, M., Huang, J.-L.: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018–1025 (2002)Google Scholar
  24. 24.
    Wilder, J.W.G., Venma, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature. 391, 59–62 (1998). https://doi.org/10.1038/34139 CrossRefGoogle Scholar
  25. 25.
    Odom, T.W., Huang, J.-L., Kim, P., Lieber, C.M.: Structures and electronic properties of carbon nanotubes. J. Phys. Chem. B. 104, 2794–2809 (2000)CrossRefGoogle Scholar
  26. 26.
    Kim, P., Odom, T.W., Huang, J.L., Lieber, C.M.: Electronic density of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states. Phys. Rev. Lett. 82, 1225–1228 (1999)CrossRefGoogle Scholar
  27. 27.
    Sgobba, V., Guldi, D.M.: Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009)CrossRefGoogle Scholar
  28. 28.
    Hong, S., Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2(4), 207–208 (2007). Bibcode:2007NatNa...2..207H. https://doi.org/10.1038/nnano.2007.89. PMID 18654263
  29. 29.
    Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001)CrossRefGoogle Scholar
  30. 30.
    Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011) https://doi.org/10.1021/cm102406h
  31. 31.
    Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., et al.: Individual single-wall carbon nanotubes as quantum wires. Nature. 386, 474–477 (1997)CrossRefGoogle Scholar
  32. 32.
    Bachtold, A., Strunk, C., Salvetat, J.-P., Bonard, J.-M., Forró, L., Nussbaumer, T., Schönenberger, C.: Aharonov-Bohm oscillations in carbon nanotubes. Nature. 397, 673–675 (1999)CrossRefGoogle Scholar
  33. 33.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991)CrossRefGoogle Scholar
  34. 34.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature. 363, 603–605 (1993.) Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–6 (1993)CrossRefGoogle Scholar
  35. 35.
    Ishigami, N., Ago, H., Imamoto, K., Tsuji, M., Iakoubovskii, K., Minami, N.: Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J. Am. Chem. Soc. 130(30), 9918–9924 (2008)CrossRefGoogle Scholar
  36. 36.
    Syangdev, N., Ishwar, K.P.: A model for catalytic growth of carbon nanotubes. J. Phys. D Appl. Phys. 41(6), 065304 (2008)CrossRefGoogle Scholar
  37. 37.
    Meyer-Plath, A., Ortis-Gil, G., Petrov, S., et al.: Plasma-thermal purification and annealing of carbon nanotubes. Carbon. 50(10), 3934–3942 (2012)CrossRefGoogle Scholar
  38. 38.
    Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. 282(5391), 1105–1107. Bibcode:1998Sci...282.1105R. (1998). https://doi.org/10.1126/science.282.5391.1105 CrossRefGoogle Scholar
  39. 39.
    Neupane, S., Lastres, M., Chiarella, M., Li, W.Z., Su, Q., Du, G.H.: Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper. Carbon. 50(7), 2641–2650 (2012)CrossRefGoogle Scholar
  40. 40.
    Richard, S.E., Li, Y., Moore, V.C., Price, B.K., Colorado, R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128(49), 15824–15829 (2006)CrossRefGoogle Scholar
  41. 41.
    Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1365 (2004). Bibcode:2004Sci...306.1362H. https://doi.org/10.1126/science.1104962. PMID 15550668
  42. 42.
    Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29 (2009)CrossRefGoogle Scholar
  43. 43.
    Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306, 1362 (2004.) Kozio, L.K., et al. High-performance carbon nanotube fiber. Science. 318, 1892 (2007)CrossRefGoogle Scholar
  44. 44.
    Chang, H., Lin, C., Kuo, C.: Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates. Thin Solid Films. 420–421, 219–224 (2002)CrossRefGoogle Scholar
  45. 45.
    Ting, G., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerness. J. Phys. Chem. 99(27), 10694–10697 (1995)CrossRefGoogle Scholar
  46. 46.
    Ting, G., Nikolaev, P., Thess, A., Colbert, D., Smalley, R.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243(1-2), 49–54 (1995)CrossRefGoogle Scholar
  47. 47.
    Chiang, M., Liu, K., Lai, T., Tsai, C., Cheng, H., Lin, I.: Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. J Vac Sci Technol B. 19(3), 1034–1039 (2001)CrossRefGoogle Scholar
  48. 48.
    Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M., Ruoff, R.S.: Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry. J. Phys. Chem. B. 103(21), 4330–4337 (1999.) [in press]CrossRefGoogle Scholar
  49. 49.
    Soundarrajan, P., Patil, A., Liming, D.: Surface modification of aligned carbon nanotube arrays for electrochemical sensing applications. Am. Vac. Soc. 21, 1198–1201 (2002)CrossRefGoogle Scholar
  50. 50.
    Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., et al.: Crystalline ropes of metallic carbon nanotubes. Science. 273, 483–487 (1996)CrossRefGoogle Scholar
  51. 51.
    Smiljanic, O., Stansfield, B.L., Dodelet, J.-P., Serventi, A., Désilets, S.: Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet. Chem. Phys. Lett. 356(3–4), 189–193 (2002). Bibcode:2002CPL...356..189S. https://doi.org/10.1016/S0009-2614(02)00132-X
  52. 52.
    Kim, K.S., Cota-Sanchez, G., Kingston, C., Imris, M., Simard, B., Soucy, G.: Large-scale production of single-wall carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 40(8), 2375–2387. Bibcode:2007JPhD...40.2375K (2007). https://doi.org/10.1088/0022-3727/40/8/S17 CrossRefGoogle Scholar
  53. 53.
    Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature. 377, 687 (1995)CrossRefGoogle Scholar
  54. 54.
    Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M.: Electrlytic formation of carbon nanostructures. Chem. Phys. Lett. 262, 161–166 (1996)CrossRefGoogle Scholar
  55. 55.
    Laplaze, D., Bernier, P., Master, W.K., Flamant, G., Guillard, T., Loiseau, A.: Carbon. 36, 685–688 (1998)CrossRefGoogle Scholar
  56. 56.
    Guillard, T., Flamant, G., Robert, J.F., Rivoire, B., Olalde, G., et al.: J. Phys. IV9, 59–64 (1999)Google Scholar
  57. 57.
    Alvarez, L., Guillard, T., Olalde, G., Rivoire, B., Robert, J.F., et al.: Synth. Met. 103, 2476–77 (1999)Google Scholar
  58. 58.
    Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science. 282, 95 (1998)CrossRefGoogle Scholar
  59. 59.
    Graupner, R., Abraham, J., Wunderlich, D., Vencelová, A., Lauffer, P., Röhrl, J., Hundhausen, M., Ley, L., Hirsch, A.: Nucleophilic−alkylation−reoxidation: a functionalization sequence for single-wall carbon nanotubes. J. Am. Chem. Soc. 128(20), 6683–6689 (2006). https://doi.org/10.1021/ja0607281 CrossRefGoogle Scholar
  60. 60.
    Syrgiannis, Z., Hauke, F., Röhrl, J., Hundhausen, M., Graupner, R., Elemes, Y., Hirsch, A.: Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides. Eur. J. Org. Chem. 15, 2544–2550 (2008). https://doi.org/10.1002/ejoc.200800005 CrossRefGoogle Scholar
  61. 61.
    Balaban, T.S., Balaban, M.C., Malik, S., Hennrich, F., Fischer, R., Rösner, H., Kappes, M.M.: Polyacylation of single-walled nanotubes under Friedel–Crafts conditions: an efficient method for functionalizing, purifying, decorating, and linking carbon allotropes. Adv. Mater. 18(20), 2763–2767 (2006). https://doi.org/10.1002/adma.200600138 CrossRefGoogle Scholar
  62. 62.
    Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010). https://doi.org/10.1021/cr100018g CrossRefGoogle Scholar
  63. 63.
    Yang, H., Wang, S.C., Mercier, P., Akins, D.L.: Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer. Chem. Commun. 1425–1427 (2006). https://doi.org/10.1039/B515896F
  64. 64.
    Chen, R., Radic, S., Choudhary, P., Ledwell, K.G., Huang, G., Brown, J.M., Chun Ke, P.: Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Appl. Phys. Lett. 101(13), 133702 (2012). https://doi.org/10.1063/1.4756794. PMC 3470598CrossRefGoogle Scholar
  65. 65.
    Wang, Z., Li, M., Zhang, Y., Yuan, J., Shen, Y., Niu, L., Ivaska, A.: Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon. 45(10), 2111–2115 (2007). https://doi.org/10.1016/j.carbon.2007.05.018 CrossRefGoogle Scholar
  66. 66.
    Campidelli, S., Sooambar, C., Lozano Diz, E., Ehli, C., Guldi, D.M., Prato, M.: Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128(38), 12544–12552 (2006). https://doi.org/10.1021/ja063697i CrossRefGoogle Scholar
  67. 67.
    Ballesteros, B., de la Torre, G., Ehli, C., Aminur Rahman, G.M., Agulló-Rueda, F., Guldi, D.M., Torres, T.: Single-wall carbon nanotubes bearing covalently linked phthalocyanines − photoinduced electron transfer. J. Am. Chem. Soc. 129(16), 5061–5068 (2007). https://doi.org/10.1021/ja068240n CrossRefGoogle Scholar
  68. 68.
    Georgakilas, V., Bourlinos, A.B., Zboril, R., Trapalis, C.: Synthesis, characterization and aspects of superhydrophobic functionalized carbon nanotubes. Chem. Mater. 20(9), 2884–2886 (2008). https://doi.org/10.1021/cm7034079 CrossRefGoogle Scholar
  69. 69.
    Fabre, B., Hauquier, F., Herrier, C., Pastorin, G., Wu, W., Bianco, A., Prato, M., Hapiot, P., Zigah, D.: Covalent assembly and micropatterning of functionalized multiwalled carbon nanotubes to monolayer-modified Si(111) surfaces. Langmuir. 24(13), 6595–6602 (2008). https://doi.org/10.1021/la800358w CrossRefGoogle Scholar
  70. 70.
    Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalized carbon nanotubes. Chem. Commun. (5), 571–577 (2005)Google Scholar
  71. 71.
    Shin, W.H., Jeong, H.M., Kim, B.G., Kang, J.K., Choi, J.W.: Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12(5), 2283–2288 (2012). Bibcode:2012NanoL..12.2283S. https://doi.org/10.1021/nl3000908. PMID 22452675
  72. 72.
    Yin, L.-W., Bando, Y., Li, M.-S., Liu, Y.-X., Qi, Y.-X.: Unique single-crystalline beta carbon nitride nanorods. Adv. Mater. 15(21), 1840–1844 (2003). https://doi.org/10.1002/adma.200305307 CrossRefGoogle Scholar
  73. 73.
    Glerup, M., Steinmetz, J., Samaille, D., Stephan, O., Enouz, S., Loiseau, A., Roth, S., Bernier, P.: Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 387, 193 (2004)CrossRefGoogle Scholar
  74. 74.
    Sen R., Satishkumar, B.C., Govindaraj S., Harikumar K.R., Renganathan M.K., Rao C.N R.: Mater. Chem. 7, 2335 (1997)Google Scholar
  75. 75.
    Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., Tour, J.M.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001)CrossRefGoogle Scholar
  76. 76.
    Knez, M., Sumser, M., Bittner, A.M., Wege, C., Jeske, H., Kooi, S., Burghard, M., Kern, K.: Electrochemical modification of individual nano-objects. J. Electroanal. Chem. 522, 70 (2002)CrossRefGoogle Scholar
  77. 77.
    Vlandas, A., Kurkina, T., Ahmad, A., Kern, K., Balasubramanian, K.: Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal. Chem. 82, 6090 (2010)CrossRefGoogle Scholar
  78. 78.
    (a) Kalyanasundaram, K.: Photochemistry of polypyridine and porphyrin complexes. Academic Press, London (1997); (b) Dolphin, D.: The porphyrins. Academic Press, New York (1978); (c) Kadish, K.M., Smith, K.M., Guilard, R.: The porphyrin handbook. Academic Press, New York (2003)Google Scholar
  79. 79.
    (a) Baskaran, D., Mays, J.W., Zhang, X.P., Bratcher, M.S.: Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J. Am. Chem. Soc. 127, 6916 (2005); (b) Li, H., Martin R.B., Harruff, B.A., Carino, R.A., Allard, L.F., Sun, Y.P: Single-walled carbon nanotubes tethered with porphyrins: synthesis and photophysical properties. Adv. Mater. 16, 896 (2004)Google Scholar
  80. 80.
    O’Reagan, B.; Grätzel, M.: Nature 353, 737 (1991)Google Scholar
  81. 81.
    Wang, P., Moorefiled, C.N., Li, S., Hwang, S. H., Shreiner, C.D., Newkome, G.R.: Chem. Commun. 10, 1091 (2006)Google Scholar
  82. 82.
    Lim, J.K., Yoo, B.K., Yi, W., Hong, S., Paik, H.Y., Chun K., Kim, S.K., Joo, S.W.: J. Mater. Chem. 16, 2374 (2006)Google Scholar
  83. 83.
    Guo, Z., Du, F., Ren, D., Chen, Y., Zheng, J., Liu, Z., Tian, J.: Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater. Chem. 16, 3021 (2006)CrossRefGoogle Scholar
  84. 84.
    Cui, J.B., Burghard, M., Kern, K.: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 (2003)CrossRefGoogle Scholar
  85. 85.
    Banerjee, S., Wong, S.S.: Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 2073 (2004.) Liu J., Rinzler A.G., Dai H.J., Hafner J H., Bradley R.K., et al.: Fullerene pipes. Science 280, 1253–56 (1998)CrossRefGoogle Scholar
  86. 86.
    Chen, J., Hamon, M.A., Hu, H., Chen, Y.S., Rao, A.M., et al.: Solution properties of single-walled carbon nanotubes. Science. 282, 95–98 (1998)CrossRefGoogle Scholar
  87. 87.
    Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C.: Nat. Nanotechnol. 21, 29 (2009)Google Scholar
  88. 88.
    Kim, W.-J., Usrey, M.L., Strano, M.S.: Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 19(7), 1571 (2007). https://doi.org/10.1021/cm061862n CrossRefGoogle Scholar
  89. 89.
    Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, D.L., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002)CrossRefGoogle Scholar
  90. 90.
    Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suuspension: an empirical Kataura plot. Nano Lett. 3(9), 1235–1238 (2003). Bibcode:2003NanoL...3.1235W. https://doi.org/10.1021/nl034428i
  91. 91.
    Reisch, M.S.: Molecular rebar design unravels carbon nanotubes. Chem. Eng. News. 93(9), 25 (2015)CrossRefGoogle Scholar
  92. 92.
    Zhao, Q., Nardelli, M.B., Bernholc, J.: Ultimate strength of carbon nanotubes: a theoretical study. Am. Phys. Soc. 65(144105), 1–6 (2002)Google Scholar
  93. 93.
    Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanke, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science. 273(5274), 483–487 (1996)CrossRefGoogle Scholar
  94. 94.
    Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., Chan, B.: Radial deformation of carbon nanotubes by van der Waals forces. Nature. 364(6437), 514–516 (1993). Bibcode:1993Natur.364..514R. https://doi.org/10.1038/364514a0
  95. 95.
    Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., Riedo, E.: Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett.. 94(17) (2005). arXiv:1201.5501. Bibcode:2005PhRvL..94q5502P. https://doi.org/10.1103/PhysRevLett.94.175502
  96. 96.
    Ruoff, R.S., Qian, D., Liu, W.K.: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4, 993–1008 (2003)CrossRefGoogle Scholar
  97. 97.
    Paradise, M., Goswami, T.: Carbon nanotubes – production and industrial applications. Mater. Des. 28, 1477–1489 (2007)CrossRefGoogle Scholar
  98. 98.
    Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287(5453), 637–640 (2000). Bibcode:2000Sci...287..637Y. https://doi.org/10.1126/science.287.5453.637. PMID 10649994
  99. 99.
    Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008). https://doi.org/10.1038/nnano.2008.211. PMID 18839003; Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334(1–2), 173–178 (2002). doi:https://doi.org/10.1016/S0921-5093(01)01807-X
  100. 100.
    Stainless Steel – 17-7PH (Fe/Cr17/Ni 7) Material Information, Archived from the original on July 19, 2011Google Scholar
  101. 101.
    Wagner, H.D.: Reinforcement. Encycl. Polym. Sci. Technol. John Wiley & Sons. doi:https://doi.org/10.1002/0471440264.pst317
  102. 102.
    Yamabe, T.: Recent development of carbon nanotubes. Synthetic Met. 1511–1518 (1995)Google Scholar
  103. 103.
    Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRefGoogle Scholar
  104. 104.
    Filleter, T., Bernal, R., Li, S., Espinosa, H.D.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23(25), 2855–2860 (2011). https://doi.org/10.1002/adma.201100547 CrossRefGoogle Scholar
  105. 105.
    Treacy, M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 381, 678–680 (1996)CrossRefGoogle Scholar
  106. 106.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 277, 1971–1975 (1997)CrossRefGoogle Scholar
  107. 107.
    Popov, M., Kyotani, M., Nemanich, R., Koga, Y.: Superhard phase composed of single-wall carbon nanotubes. Phys. Rev. B. 65(3), 033408 (2002). Bibcode:2002PhRvB..65c3408P. https://doi.org/10.1103/PhysRevB.65.033408
  108. 108.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  109. 109.
    Chem. Eng. News 25 (2016)Google Scholar
  110. 110.
    Kelly, B.T.: Physics of graphite. Applied Science, London (1981)Google Scholar
  111. 111.
    Hone, J.: Carbon Nanotubes 80, 273–86 (2001)Google Scholar
  112. 112.
    Yi, W., Lu, L., Zhang, D.L., Pan, Z.W., Xie, S.S.: Linear specific heat of carbon nanotubes. Phys. Rev. 59(14), R9015–R9018 (1999)CrossRefGoogle Scholar
  113. 113.
    Hone, J., Llaguno, M.C., Biercuk, M.J., Johnson, A.T., Batlogg, B., Benes, Z., Fischer, J.E.: Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A. 74, 339–343 (2002)CrossRefGoogle Scholar
  114. 114.
    Pradhan, N.R., Duan, H., Liang, J., Iannacchione, G.S.: The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnol. 20, 1–7 (2009)CrossRefGoogle Scholar
  115. 115.
    Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., Li, J.Q.: Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B. 66, 165440-1–165540-6 (2002)Google Scholar
  116. 116.
    Kolosnjaj, J., Szwarc, H., Moussa, F.: Toxicity studies of carbon nanotubes. Adv. Exp. Med Biol. 620, 181–204 (2007). https://doi.org/10.1007/978-0-387-76713-0_14. ISBN 978-0-387-76712-3. PMID 18217344
  117. 117.
    Corredor, C., Hou, W.C., Klein, S.A., Moghadam, B.Y., Goryll, M., Doudrick, K., Westerhoff, P., Posner, J.D.: Disruption of model cell membranes by carbon nanotubes. Carbon. 60, 67–75 (2013). https://doi.org/10.1016/j.carbon.2013.03.057 CrossRefGoogle Scholar
  118. 118.
    Lam, C.W., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L.: A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 36(3), 189–217 (2006). https://doi.org/10.1080/10408440600570233.PMID 16686422 CrossRefGoogle Scholar
  119. 119.
    Firme III, C.P., Bandaru, P.R.: Toxicity in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. Biol. Med. 6, 245–256 (2010)CrossRefGoogle Scholar
  120. 120.
    Yang, S.T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., et al.: Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett. 181, 182–189 (2008)CrossRefGoogle Scholar
  121. 121.
    Byrne, J.D., Baugh, J.A.: The significance of nano particles in particle-induced pulmonary fibrosis. McGill J. Med. 11(1), 43–50 (2008)Google Scholar
  122. 122.
    Porter, A., Gass, M., Muller, K., Skepper, J.N., Midgley, P.A., Welland, M.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007). Bibcode:2007NatNa...2..713P. https://doi.org/10.1038/nnano.2007.347. PMID 18654411
  123. 123.
    Fatkhutdinova, L.M., Khaliullin, T.O., Vasil'yeva, O.L., Zalyalov, R.R., Mustafin, I.G., Kisin, E.R., Birch, M.E., Yanamala, N., Shvedova, A.A.: Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 299, 125–131 (2016). https://doi.org/10.1016/j.taap.2016.02.016 CrossRefGoogle Scholar
  124. 124.
    Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., et al.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health. 66, 1909–1926 (2003)CrossRefGoogle Scholar
  125. 125.
    Lee, J.S., Choi, Y.C., Shin, J.H., Lee, J.H., Lee, Y., Park, S.Y., Baek, J.E., Park, J.D., Ahn, K.: Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicol. 9(6), 802–811 (2015). https://doi.org/10.3109/17435390.2014.978404. ISSN 1743-5390. PMID 25395166
  126. 126.
    Liou, S.-H., Tsai, C.S.J., Pelclova, D., Schubauer-Berigan, M.K., Schulte, P.A.: Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res.. 17(10), 1–19 (2015). https://doi.org/10.1007/s11051-015-3219-7. ISSN 1388-0764. PMC 4666542. PMID 26635494
  127. 127.
    Grosse, Y.: Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 15(13), 1427–1428 (2014)CrossRefGoogle Scholar
  128. 128.
    Schulte, P.A., Kuempel, E.D., Zumwalde, R.D., Geraci, C.L., Schubauer-Berigan, M.K., Castranova, V., Hodson, L., Murashov, V., Dahm, M.M.: Focused actions to protect carbon nanotube workers. Am. J. Ind. Med. 55(5), 395–411 (2012). https://doi.org/10.1002/ajim.22028. ISSN 1097-0274 CrossRefGoogle Scholar
  129. 129.
    Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Natl. Inst. Occup.Saf. Health. 65, 1–156 (2013)Google Scholar
  130. 130.
    Lacerda, L., Bianco, A., Prato, M., Kostarelos, K.: Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006)CrossRefGoogle Scholar
  131. 131.
    Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S., Schwegler-Berry, D., et al.: Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect. 116, 1211–1217 (2008)CrossRefGoogle Scholar
  132. 132.
    Jacobsen, N.R., Pojana, G., White, P., Moller, P., Cohn, C.A., Korsholm, K.S., et al.: Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta mouse lung epithelial cells. Environm. Mol. Mutagen. 49, 476–487 (2008)CrossRefGoogle Scholar
  133. 133.
    Guo, L., Bussche, A.V.D., Buechner, M., Yan, A., Kane, A.B., Hurt, R.H.: Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 4(6), 721–727 (2008)CrossRefGoogle Scholar
  134. 134.
    Glenn, H.: U.S. Launches Inquiry Into Plastic resin Imports. Chem. Eng. News. 93(12), 28 (2015)CrossRefGoogle Scholar
  135. 135.
    Zyvex Technologies. http://zyvextech.com
  136. 136.
    Edwards, B.C.: The space elevator: a revolutionary earth-to-space transportation system. BC Edwards (2003)Google Scholar
  137. 137.
    Miaudet, P., Badaire, S., Maugey, M., Derré, A., Pichot, V., Launois, P., Poulin, P., Zakri, C.: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 5(11), 2212–2215 (2005). Bibcode:2005NanoL...5.2212M. https://doi.org/10.1021/nl051419w. PMID 16277455
  138. 138.
    Li, Y.-L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004). Bibcode:2004Sci...304..276L. https://doi.org/10.1126/science.1094982. PMID 15016960
  139. 139.
    Pötschke, P., Andres, T., Villmow, T., Pegel, S., Brünig, H., Kobashi, K., Fischer, D., Häussler, L.: Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol. 70(2), 343–349 (2010). https://doi.org/10.1016/j.compscitech.2009.11.005 CrossRefGoogle Scholar
  140. 140.
    Chen, P., Kim, H.S., Kwon, S.M., Yun, Y.S., Jin, H.J.: Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Curr. Appl. Phys. 9(2), e96. Bibcode:2009CAP.....9...96C (2009). https://doi.org/10.1016/j.cap.2008.12.038 CrossRefGoogle Scholar
  141. 141.
    Coleman, J.N., Khan, U., Blau, W.J., Gun’Ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44(9), 1624–1652 (2006). https://doi.org/10.1016/j.carbon.2006.02.038 CrossRefGoogle Scholar
  142. 142.
    Alimohammadi, F., Parvinzadeh, M., Shamei, A.: Carbon nanotube embedded textiles. US20110171413 A1, 14 July 2011Google Scholar
  143. 143.
    Alimohammadi, F., Parvinzadeh Gashti, M., Shamei, A.: Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J. Coat. Technol. Res. 10, 123–132 (2012). https://doi.org/10.1007/s11998-012-9429-3 CrossRefGoogle Scholar
  144. 144.
    Alimohammadi, F., Gashti, M.P., Shamei, A.: A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Prog. Org. Coat. 74(3), 470–478 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.012 CrossRefGoogle Scholar
  145. 145.
    Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., Ajayan, P.M.: Direct synthesis of long single-walled carbon nanotube strands. Science. 296, 884 (2002)CrossRefGoogle Scholar
  146. 146.
    Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. 306, 1358 (2004)CrossRefGoogle Scholar
  147. 147.
    Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science. 309, 1215 (2005)CrossRefGoogle Scholar
  148. 148.
    Yildirim, T., Gülseren, O., Kılıç, Ç., Ciraci, S.: Pressure-induced interlinking of carbon nanotubes. Phys. Rev. B. 62(19), 19 (2001). arXiv:cond-mat/0008476. Bibcode:2000PhRvB..6212648Y. https://doi.org/10.1103/PhysRevB.62.12648
  149. 149.
    Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. 306, 1358 (2004)CrossRefGoogle Scholar
  150. 150.
    Behabtu, N., et al.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 339, 182 (2013)CrossRefGoogle Scholar
  151. 151.
    Thoteson, E., Ren, Z., Chou, T.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRefGoogle Scholar
  152. 152.
    Delmotte, J.P., Rubio, A.: Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon. 40(10), 1729–1734 (2002)CrossRefGoogle Scholar
  153. 153.
    Chou, T.-W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.-H.: Compos. Sci. Technol. 64, 2363 (2004)Google Scholar
  154. 154.
    Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon Nanotube-reinforced epoxy composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363 (2004)CrossRefGoogle Scholar
  155. 155.
    Yao, Z., Braidy, N., Botton, G.A., Adronov, A.: Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites. J. Am. Chem. Soc. 125, 16015 (2003)CrossRefGoogle Scholar
  156. 156.
    Veedu, V.P., et al.: Multifunctional composites using reinforced laminae with carbon-nantube forests. Nat. Mater. 5, 457 (2006)CrossRefGoogle Scholar
  157. 157.
    Garcia, E.J., Wardle, B.L., Hard, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034 (2008)CrossRefGoogle Scholar
  158. 158.
    Seeger, T., Köhler, T., Frauenheim, T., Grobert, N., Rühle, M., et al.: Chem. Commun. 35, 34–35 (2002)Google Scholar
  159. 159.
    Kashigawa, T., et al.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928 (2005)CrossRefGoogle Scholar
  160. 160.
    Smith, J.: Slicing it extra thin, Tireview, 2005. Available from: http://www.tireview.com
  161. 161.
    Krishnamoorti, R., Dyke, C.A., Tour, J.M.: To be submitted for publicationGoogle Scholar
  162. 162.
    Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009)CrossRefGoogle Scholar
  163. 163.
    Yu, K., Ganhua, L., Zheng, B., Shun, M., Junhong, C.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 1556–1562 (2011). https://doi.org/10.1021/jz200641c CrossRefGoogle Scholar
  164. 164.
    Bourzac, K.: Nano paint could make airplanes invisible to radar, Technology Review. Mit, 5 December 2011Google Scholar
  165. 165.
    Dai, L., Chang, D.W., Baek, J.-B., Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small. 8, 1130 (2012)CrossRefGoogle Scholar
  166. 166.
    Evanoff, J., et al.: Adv. Mater. 24, 433 (2012)Google Scholar
  167. 167.
    Sotowa, C., et al.: The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. ChemSusChem. 1, 911 (2008)CrossRefGoogle Scholar
  168. 168.
    Wu, G.T., Wang, C.S., Zhang, X.B., Yang, H.S., Qi, Z.F., Li, W.Z.: Lithium insertion into CuO/carbon nanotubes. J. Power Sources. 75, 175–179 (1998)CrossRefGoogle Scholar
  169. 169.
    Sakamoto, J.S., Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. Electrochem Soc. 149, A26–A30 (2002)CrossRefGoogle Scholar
  170. 170.
    Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., McNeil, L.E., Wu, Y., Zhou, O.: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 1–2, (69–75) (2000). Bibcode:2000CPL...327...69G. https://doi.org/10.1016/S0009-2614(00)00851-4
  171. 171.
    See, Beyond Batteries: Storing Power in a Sheet of Paper, at https://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php (2007). Accessed 2016
  172. 172.
    Hu, L., Choi, J.W., Yang, Y., Jeong, S., Mantia, F.L., Cui, L.-F., Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad Sci. 106(51), 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106. ISSN 0027-8424. PMC 2799859. PMID 19995965 CrossRefGoogle Scholar
  173. 173.
    Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary Li-ion paper batteries. ACS Nano. 4(10), 5843–5848 (2010). https://doi.org/10.1021/nn1018158. ISSN 1936-0851 CrossRefGoogle Scholar
  174. 174.
    Chen, Z., To, J.W.F., Wang, C., Lu, Z., Liu, N., Chortos, A., Pan, L., Wei, F., Cui, Y., Boa, Z.: A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4, 1400207 (2014). https://doi.org/10.1002/aenm.201400207 CrossRefGoogle Scholar
  175. 175.
    Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B., Hammond, P.T., Shao-Horn, Y.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010). https://doi.org/10.1038/NNANO.2010.116 CrossRefGoogle Scholar
  176. 176.
    Guo, J., Xu, Y., Wang, C.: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011)CrossRefGoogle Scholar
  177. 177.
    Endo, M., Hayashi, T., Kim, Y.A., Terrones, M., Dresselhaus, M.S.: Applications of carbon nanotubes in the twenty-first century. R. Soc. 362, 2223–2238 (2004)Google Scholar
  178. 178.
    Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes–the route toward applications. Science. 297, 787–792 (2002)CrossRefGoogle Scholar
  179. 179.
    Frackowiak, E., Beguin, F.: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon. 40, 1775–1787 (2002)CrossRefGoogle Scholar
  180. 180.
    Ma, R.Z., Liang, J., Wei, B.Q., Zhang, B., Xu, C.L., Wu, D.H.: Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull. Chem. Soc. Jpn. 72, 2563–2566 (1999)CrossRefGoogle Scholar
  181. 181.
    Jurewicz, K., Delpeux, S., Bertagna, V., Be-guin, F., Frackowiak, E.: Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 347, 36–40 (2001)CrossRefGoogle Scholar
  182. 182.
    Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chemistry of Materials. 23(2), 646–657 (2011)CrossRefGoogle Scholar
  183. 183.
    Wee, G., Mak, W.F., Phonthammachai, N., Kiebele, A., Reddy, M.V., Chowdari, B.V.R., Gruner, G., Srinivasan, M., Mhaisalkar, S.G.: J. Electrochem. Soc. 157, A179 (2010)Google Scholar
  184. 184.
    Xie, X., Gao, L.: Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon. 45, 2365 (2007)CrossRefGoogle Scholar
  185. 185.
    Zhou, Y.-k., He, B.-l., Zhou, W.-j., Huang, J., Li, X.-h., Wu, B., Li, H.-L.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta. 49, 257 (2004)CrossRefGoogle Scholar
  186. 186.
    Khomenko, V., Frackowiak, E., Béguin, F.: Electrochim. Acta. 50, 2499 (2005)Google Scholar
  187. 187.
    M. H. van der Veen et al.: Paper presented at the 2012, IEEE international interconnect technology conference, San Jose, CA, 4 to 6 June 2012Google Scholar
  188. 188.
    Liu, C., Bard, A.J., Wudl, F., Weitz, I., Heath, J.R.: Electrochemical characterization of films of single-walled carbon nonotubes and their possible application in supercapacitors. Electrochem. Solid-State Lett. 2(11), 577–578 (1999)CrossRefGoogle Scholar
  189. 189.
    Gong, K., Du, F., Xia, M., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 323, 760 (2009)CrossRefGoogle Scholar
  190. 190.
    Matsumoto, T., et al.: Science 2004, 840 (2011)Google Scholar
  191. 191.
    Le Goff, A., et al.: From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science. 326, 1384 (2009)CrossRefGoogle Scholar
  192. 192.
    Lee, J.M., et al.: Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv. Mater. 23, 629 (2011)CrossRefGoogle Scholar
  193. 193.
    Gabor, N.M., Zhong, Z., Bosnick, K., Park, J., McEuen, P.L.: Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science. 325, 1367 (2009)CrossRefGoogle Scholar
  194. 194.
    Ajayan, P., Zhou, O.: Applications of carbon nanotubes, carbon nanotubes. Top. Appl. Phys. 80, 391–425 (2001)CrossRefGoogle Scholar
  195. 195.
    Pederson, B. M.: J. Phys. Rev. Lett. 69(2689), 405 (1992)Google Scholar
  196. 196.
    Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature. 386(6623), 377–379. Bibcode:1997Natur.386..377D (1997). https://doi.org/10.1038/386377a0 CrossRefGoogle Scholar
  197. 197.
    Jhi, S.H., Kwon, Y.K., Bradley, K., Gabriel, J.C.P.: Hydrogen storage by physisorption: beyond carbon. Solid State Commun. 129(12), 769–773. Bibcode:2004SSCom.129..769J (2004). https://doi.org/10.1016/j.ssc.2003.12.032 CrossRefGoogle Scholar
  198. 198.
    Vohrer, U., et al.: Carbon nanotube sheets for the use as artificial muscles. Carbon. 42, 1159 (2004). https://doi.org/10.1016/j.carbon.2003.12.044 CrossRefGoogle Scholar
  199. 199.
    Chang, T., Guo, Z.: Temperature-induced reversible dominoes in carbon nanotubes. Nano Lett. 10(1021), 101623 (2010)Google Scholar
  200. 200.
    Baughman, R.H., et al.: Carbon nano actuators. Science. 284(5418), 1340 (1999)CrossRefGoogle Scholar
  201. 201.
    Spinks, G.M., et al.: Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728 (2002)CrossRefGoogle Scholar
  202. 202.
    Aliev, A.E., et al.: Giant-stroke, superelastic carbon nanotube aerogel muscles. Science. 323(5921), 1575–1578 (2009)CrossRefGoogle Scholar
  203. 203.
    Madden, D.W.: Materials science: stiffer than steel. Science. 323(5921), 1571–1572 (2009)CrossRefGoogle Scholar
  204. 204.
    Yuzvinsky, T.: Nanotube nanomotor, tailoring carbon nanotubes. https://users.soe.ucsc.edu/~yuzviknsy/research/nanomotor.php. Accessed 30 Sept 2016
  205. 205.
    Berger, M.: Speeding up catalytic nanomotors with carbon nanotubes. Nano Werk [Online]. http://www.nanowerk.com/spotlight/spotid=5553.php (2008). Accessed 30 Sept 2016
  206. 206.
    Laocharoensuk, R., Burdick, J., Wang, J.: Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano. 2(5), 1069–1075 (2008)CrossRefGoogle Scholar
  207. 207.
    Bailey, S.W.D., Amanatidis, I., Lambert, C.J.: Carbon nanotube electron windmills: a novel design for nanomotors. Phys. Rev. Lett. 100, 256802 (2008)CrossRefGoogle Scholar
  208. 208.
    Baugham, R., Zakhidov, A., Heer, W.: Carbon nanotubes – the route toward applications. Science. 297, 787–792 (2002)CrossRefGoogle Scholar
  209. 209.
    Tang, Z.K., et al.: Science. 292, 2462 (2001)CrossRefGoogle Scholar
  210. 210.
    Tennent, H.G.: Carbon fibrils, method for producing same and compositions containing same. US 4663230 A, 5 May 1987Google Scholar
  211. 211.
    Kong, N.R., Franklin, C., Zhou M.C., Chapline, S., Peng, K., Cho, H.D.: Science 287(622), 406–15 (2000)Google Scholar
  212. 212.
    Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., et al.: Nanotube molecular wires as chemical sensors. Science. 287, 622–625 (2000)CrossRefGoogle Scholar
  213. 213.
    Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., Grimes, C.A.: Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B. 81, 32–41 (2001)CrossRefGoogle Scholar
  214. 214.
    Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J. M., Santucci, S.: Mater. Sci. Eng. C 23, 523 (2003)Google Scholar
  215. 215.
    Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J. M., Santucci, S.: Sens. Actuators B 93, 333 (2003)Google Scholar
  216. 216.
    Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J.M., Santucci, S.: J. Eur. Ceram. Soc. 24,1405 (2004)Google Scholar
  217. 217.
    Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S., Cho, K.J.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347 (2003)CrossRefGoogle Scholar
  218. 218.
    Ahn, K.S., Kim, J.H., Lee, K.N., Kim, C.O., Hong, J.P.: Multi-wall carbon nanotubes as a high-efficiency gas sensor. J. Korean Phys. Soc. 45, 158 (2004)Google Scholar
  219. 219.
    Valentini, L., Bavastrello, V., Stura, E., Armanetano, I., Nicolini, C., Kenny, J.M.: Chem. Phys. Lett. 383, 617 (2004)Google Scholar
  220. 220.
    He, J.-B., Chen, C.-L., Li, J.-H.: Sens. Actuators B 99, 1 (2004)Google Scholar
  221. 221.
    Wong, Y.M., Kang, W.P., Davidson, J.L., Wisitsora-at, A., Soh, K.L.: Sens. Actuators B 93, 327 (2003)Google Scholar
  222. 222.
    Suehiro, J., Zhou, G.B., Hara, M.: J. Phys. D. 36, L109 (2003)Google Scholar
  223. 223.
    Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., Grimes, C.A.: Sens. Actuators B 81, 32 (2001)Google Scholar
  224. 224.
    Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942 (2005)CrossRefGoogle Scholar
  225. 225.
    Esser, B., Schnoor, J.M., Swager T.M.: Angew Chem. Int. Ed. 51, 5752 (2012)Google Scholar
  226. 226.
    Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of singlewalled carbon nanotubes. Appl. Phys. Lett. 83, 4026 (2003)CrossRefGoogle Scholar
  227. 227.
    Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929 (2003)CrossRefGoogle Scholar
  228. 228.
    Valentini, L., Armentano, I., Kenny, J.M., Cantalini, C., Lozzi, L., Santucci, S.: Sensors for sub-ppm NO 2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82, 961 (2003)CrossRefGoogle Scholar
  229. 229.
    Mubeen, S., Zhang, T., Yoo, B., Deshusses, M.A., Myung, N.V.: Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J. Phys. Chem. C. 111, 6321 (2007)CrossRefGoogle Scholar
  230. 230.
    Sun, Y., Wang, H.: High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv. Mater. 19, 2818 (2007)CrossRefGoogle Scholar
  231. 231.
    Sun, Y., Wang, H.: Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, 213107 (2007)CrossRefGoogle Scholar
  232. 232.
    Lu, Y.J., Li, J., Han, J., Ng, H.T., Binder, C., Partridge, C., Meyyappan, M.: Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344 (2004)CrossRefGoogle Scholar
  233. 233.
    Star, A., Han, T.R., Joshi, V., Gabriel, J.C.P., Gruner, G.: Nanoelectronic carbon dioxide sensors. Adv. Mater. 16, 2049 (2004)CrossRefGoogle Scholar
  234. 234.
    Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.C.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B. 110, 21014 (2006)CrossRefGoogle Scholar
  235. 235.
    Lee, H., Naishadham, K., Tentzeris, M.M., Shaker, G.: A novel highly-sensitive antenna-based ‘smart skin’ bas sensor utilizing carbon nano tubes and inkjet printing, pp. 1593–1596 (2011)Google Scholar
  236. 236.
    Chopra, S., Pham, A., Gaillard, J., Parker, A., Rao, A.M.: Appl. Hys. Lett. 80, 4632–34 (2002)Google Scholar
  237. 237.
    Rubianes, M.D., Rivas, G.A.: Electrochem. Commun. 5, 689 (2003)Google Scholar
  238. 238.
    Farajian, A., Yakobson, B., Mizeseki, H., Kawazoe, Y.: Electronic transport through bent carbon nanotubes: nanoelectromechanical sensors and switches. Phys Rev. 67, 1–6 (2003)CrossRefGoogle Scholar
  239. 239.
    Gao, M., Dai, L.M., Wallace, G.G.: Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis. 15, 1089 (2003)CrossRefGoogle Scholar
  240. 240.
    Star, A., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. U.S.A. 103, 921 (2006)CrossRefGoogle Scholar
  241. 241.
    Trojanowicz, M., Mulchandani, A., Mascini, M.: Carbon nanotubesmodified screen-printed electrodes for chemical sensors and biosensors. Anal. Lett. 37, 3185 (2004)CrossRefGoogle Scholar
  242. 242.
    Britto, P.J., Santhanam, K.S.V., Ajayan, P.M.: Carbon nanotube electrode for oxidation of dopamine. Bielectrochem. Bioenerg. 41, 121 (1996)CrossRefGoogle Scholar
  243. 243.
    Zhang, M., Smith, A., Gorski, W.: Anal. Chem. 76, 1083 (2004)Google Scholar
  244. 244.
    Xu, J.Z., Zhu, J.J., Wu, Q., Hu, Z., Chen, H.Y.: An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis (NY). 15, 219 (2003)CrossRefGoogle Scholar
  245. 245.
    Jiang, L.-C., Zhang, W.-D.: A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402 (2010)CrossRefGoogle Scholar
  246. 246.
    Pérez López, B., Merkoçi, A.: Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst. 134, 60 (2009)CrossRefGoogle Scholar
  247. 247.
    Zhao, Y., Gao, Y., Zhan, D., Liu, H., Zhao, Q., Kou, Y., Shao, Y., Li, M., Zhuang, Q., Zhu, Z.: Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta. 66, 51 (2005)CrossRefGoogle Scholar
  248. 248.
    Guo, M., Chen, J., Li, J., Tao, B., Yao, S.: Anal. Chem. Acta 532, 71 (2005)Google Scholar
  249. 249.
    Mancuso, S., Marras, A.M., Magnus, V., Baluska, F.: Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal. Biochem. 341, 344 (2003)CrossRefGoogle Scholar
  250. 250.
    Hun, C.G., Wang, W.L., Wang, S.X., Zhu, W., Li, Y.: Investigation on electrochemical properties of carbon nanotubes. Diamond Relat. Mat. 12, 1295 (2003)CrossRefGoogle Scholar
  251. 251.
    Wang, S.-F., Xu, Q.: Square wave voltammetry determination of brucine at multiwall carbon nanotube-modified glassy carbon electrodes. Anal. Lett. 38, 657 (2005)CrossRefGoogle Scholar
  252. 252.
    Gong, K.P., Dong, Y., Xiong, S.X., Chen, Y., Mao, L.: Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosens. Bioelectron. 20, 253 (2004)CrossRefGoogle Scholar
  253. 253.
    Deo, R.P., Wang, J.: Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes. Electrochem. Commun. 6, 284 (2004)CrossRefGoogle Scholar
  254. 254.
    Ye, J.S., We, Y., De Zhang, W., Gan, L.M., Xu, G.Q., Sheu, F.S.: Electroanalysis (NY) 15, 1693 (2003)Google Scholar
  255. 255.
    Zhao, G., Zang, S.Q., Liu, K.Z., Lin, S., Liang, J., Guo, X.Y., Zhang, Z.J.: Determination of trace xanthine by anodic stripping voltammetry with carbon nanotube modified glassy carbon electrode. Anal. Lett. 35, 2233 (2002)CrossRefGoogle Scholar
  256. 256.
    Zhao, G., Liu, K.Z., Lin, S., Liang, J., Guo, X.Y., Zhang, Z.J.: Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine. Microchim. Acta. 143, 255 (2003)CrossRefGoogle Scholar
  257. 257.
    Zeng, B.Z., Huang, F.: Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified gold electrodes. Talanta. 64, 380 (2004)CrossRefGoogle Scholar
  258. 258.
    Yang, C.H.: Microchem. Acta 148, 87 (2004)Google Scholar
  259. 259.
    Britto, P.J., Santhanam, K.S.V., Ajayan, P.M.: Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41, 121 (1996)CrossRefGoogle Scholar
  260. 260.
    Wang, Z.H., Liu, J., Liang, Q.L., Wang, Y.M., Luo, G.: Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst. 127, 653 (2002)CrossRefGoogle Scholar
  261. 261.
    Rubianes, M.D., Rivas, G.A.: Carbon nanotubes paste electrode. Electrochem. Commun. 5, 689 (2003)CrossRefGoogle Scholar
  262. 262.
    Wang, J.X., Li, M.X., Shi, Z.J., Li, N.Q., Gu, Z.N.: Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis. 14, 225 (2002)CrossRefGoogle Scholar
  263. 263.
    Moore, R.R., Banks, C.E., Compton, R.G.: Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal. Chem. 76, 2677 (2004)CrossRefGoogle Scholar
  264. 264.
    Valentini, F., Amine, A., Orlanducci, S., Terranova, M.L., Palleschi, G.: Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal. Chem. 75, 5413 (2003)CrossRefGoogle Scholar
  265. 265.
    Wang, J., Musameh, M.: Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 75, 2075 (2003)CrossRefGoogle Scholar
  266. 266.
    Wang, J., Musameh, M.: Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408 (2003)CrossRefGoogle Scholar
  267. 267.
    Rubianes, M.D., Rivas, G.A.: Carbon nanotubes paste electrode. Electrochem. Commun. 5, 689 (2003)CrossRefGoogle Scholar
  268. 268.
    Wang, J.: Carbon-nanotube based electrochemical biosensers: a review. Electroanalysis. 17(1), 7–14 (2005)CrossRefGoogle Scholar
  269. 269.
    Wang, J., Musameh, M.: Carbon nanotube screen-printed electrochemical sensors. Analyst. 129, 1 (2004)CrossRefGoogle Scholar
  270. 270.
    Lin, Y., Lu, F., Wang, J.: Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis. 16, 145 (2004)CrossRefGoogle Scholar
  271. 271.
    Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem., Int. Ed. Engl. 43, 2113 (2004)CrossRefGoogle Scholar
  272. 272.
    Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010 (2004)CrossRefGoogle Scholar
  273. 273.
    Cheng, G., Zhao, J., Tu, Y., He, P., Fang, Y.: A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal. Chim. Acta. 533, 11 (2005)CrossRefGoogle Scholar
  274. 274.
    Koehne, J.E., Chen, H., Cassell, A.M., Ye, Q., Han, J., Meyyappan, M., Li, J.: Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin. Chem. 50, 1886 (2004)CrossRefGoogle Scholar
  275. 275.
    Zhang, X., Jiao, K., Liu, S., Hu, Y.: Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81, 6006 (2009)CrossRefGoogle Scholar
  276. 276.
    Staii, C., Johnson, A.T., Chen, M., Gelperin, A.: DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774 (2005)CrossRefGoogle Scholar
  277. 277.
    Wang, J., Kawde, A., Mustafa, M.: Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst. 128, 912 (2003)CrossRefGoogle Scholar
  278. 278.
    Pedano, M., Rivas, G.A.: Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Commun. 6, 10 (2004)CrossRefGoogle Scholar
  279. 279.
    Wang, J., Li, M., Shi, Z., Li, N., Gu, Z.: Electroanalysis 16, 140 (2004)Google Scholar
  280. 280.
    Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta. 50, 3049–3060 (2005)CrossRefGoogle Scholar
  281. 281.
    Li, J., Ng, H.T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., Meyyappan, M.: Carbon nanotube nanoelectrode array for ultrasensitive dna detection. Nano Lett. 3, 597 (2003)CrossRefGoogle Scholar
  282. 282.
    Nguyen, C.V., Delzeit, L., Cassell, A.M., Li, J., Han, J., Meyyappan, M.: Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2, 1079 (2002)CrossRefGoogle Scholar
  283. 283.
    Koehne, J., Chen, H., Li, J., Cassell, A.M., Ye, Q., Ng, H.T., Han, J., Meyyappan, M.: Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnol. 14, 1239 (2003)CrossRefGoogle Scholar
  284. 284.
    Koehne, J., Li, J., Cassell, A.M., Chen, H., Ye, Q., Ng, H.T., Han, J., Meyyappan, M.: The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14, 676 (2004)CrossRefGoogle Scholar
  285. 285.
    Johnston, D.H., Glasgow, K.C., Thorp, H.H.: Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. An. Chem. Soc. 117, 8933 (1995)CrossRefGoogle Scholar
  286. 286.
    Thorp, H.H.: TIBTECH 16, 117 (1998)Google Scholar
  287. 287.
    Gooding, J.J.: Electrochemical DNA hybridization biosensors. Electroanalysis. 14, 1149 (2002)CrossRefGoogle Scholar
  288. 288.
    Tran, H.V., Piro, B., Reisberg, S., Tran, L.D., Duc, H.T., Pham, M.C.: Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens. Bioelectro. 49, 164–169 (2013)CrossRefGoogle Scholar
  289. 289.
    Star, A., Gabriel, J.C.P., Bradley, K., Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003)CrossRefGoogle Scholar
  290. 290.
    Boussaad, S., Tao, N., Zhang, N.J., Zhang, R., Hopson, T., Nagahara, L.A.: In Situ detection of cyto chrome adsorption with single walled carbon nanotube device. Chem. Commun. 9, 1502–1503 (2003)CrossRefGoogle Scholar
  291. 291.
    Forzani, E.S., Li, X.L., Zhang, P.M., Tai, N.J., Zhang, R., Amlani, I., Tsui, R., Nagahara, L.A.: Turning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small. 2, 1283–1291 (2006)CrossRefGoogle Scholar
  292. 292.
    Gooding, J.J., Wibowo, R., Liu, J.Q., Yang, W.R., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B.: Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006–9007 (2003)CrossRefGoogle Scholar
  293. 293.
    Yu, X., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)CrossRefGoogle Scholar
  294. 294.
    Besterman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., Dekker, C.: Nano Lett. 3, 727 (2003)Google Scholar
  295. 295.
    So, H.M., Won, J., Kim, Y.H., Kim, B.K., Ryu, B.H., Na, P.S., Kim, H., Lee, J.O.: Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906 (2007)CrossRefGoogle Scholar
  296. 296.
    So, H.M., Park, D.W., Jeon, E.K., Kim, Y.H., Kim, B.S., Lee, C.K., Choi, S.Y., Kim, S.C., Chang, J., Lee, J.O.: Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small. 4, 197 (2008)CrossRefGoogle Scholar
  297. 297.
    Yoon, H., Kim, J.H., Lee, N., Kim, B.G., Jang, J.: A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem. 9, 634 (2008)CrossRefGoogle Scholar
  298. 298.
    Wohlstadter, J.N., Wilbur, J.L., Sigal, G.B., Biebuyck, H.A., Billadeau, L.W., Dong, L.W., Fischer, A.B., Gudbande, S.R., Jamieson, S.H., Kenten, J.H., Leginus, J., Leland, J.K., Massey, R.J., Wohlstadter, S.J.: Carbon nanotube-based biosensor. Adv. Mater. 15, 1184 (2003)CrossRefGoogle Scholar
  299. 299.
    Sánchez, S., Pumera, M., Fabregas, E.: Biosens. Biolectron. 22, 332 (2007)Google Scholar
  300. 300.
    Sánchez, S., Roldán, M., Pérez, S., Fabregas, E.: Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone. Anal. Chem. 80, 6508 (2008)CrossRefGoogle Scholar
  301. 301.
    Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)CrossRefGoogle Scholar
  302. 302.
    Musameh, M., Wang, J., Merkoci, A., Lin, Y.: Low-potential stable nadh detection at carbon -nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4, 743 (2002)CrossRefGoogle Scholar
  303. 303.
    Campbell, J.K., Sun, L., Crooks, R.M.: Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779 (1999)CrossRefGoogle Scholar
  304. 304.
    Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemao, S.G., Dekker, C.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137 (2005)CrossRefGoogle Scholar
  305. 305.
    Zhang, C., Wang, G., Liu, M., Feng, Y., Zhang, Z., Fang, B.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Electrochim. Acta. 55, 2835 (2010)CrossRefGoogle Scholar
  306. 306.
    Kong, L., Wang, J., Luo, T., Meng, F., Chen, X., Li, M., Liu, J.: Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst. 135, 368 (2010)CrossRefGoogle Scholar
  307. 307.
    Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of singlewalled carbon nanotubes. Appl. Phys. Lett. 83, 4026 (2003)CrossRefGoogle Scholar
  308. 308.
    Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soci. 126, 15638–15639 (2004)CrossRefGoogle Scholar
  309. 309.
    Welsher, K., Sherlock, S.P., Dai, H.: Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences. 108(22), 8943–8948 (2011)CrossRefGoogle Scholar
  310. 310.
    Heller, D.A., Baik, S., Eurell, T.E., Strano, M.S.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793 (2005)CrossRefGoogle Scholar
  311. 311.
    Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., Braet, F.: Carbon nanotubes for biological and biomedical applications. Nanotechnol. 18(412001), 1–12 (2007)Google Scholar
  312. 312.
    Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.J.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA. 102, 11600–11605 (2005)CrossRefGoogle Scholar
  313. 313.
    Pantarotto, D., Briand, J.P., Prato, M., Bianco, A.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb). (1), 16–17 (2004)Google Scholar
  314. 314.
    Bhandavat, R., Feldman, A., Cromer, C., Lehman, J., Singh, G.: Very high laser-damage threshold of polymer-derived Si(B)CN- carbon nanotube composite coatings. ACS Appl. Mater Interfaces. 5(7), 2354–2359 (2013). https://doi.org/10.1021/am302755x CrossRefGoogle Scholar
  315. 315.
    Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning probe microscopy. Nature. 384, 147–150 (1996)CrossRefGoogle Scholar
  316. 316.
    Yumura, M.: Carbon nanotube industrial applications. Res. Cent. Adv. Carbon Mater. 10, (2004)Google Scholar
  317. 317.
    Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science. 286, 2148 (1999)CrossRefGoogle Scholar
  318. 318.
    Chen, H.-W., Wu, R.-J., Chan, K.-H., Sun, Y.-L., Su, P.-G.: Sens. Actuators B 104, 80 (2005)Google Scholar
  319. 319.
    Penza, M., Antolini, F., Antisari, M.V.: Sens. Actuators B 100, 47 (2004)Google Scholar
  320. 320.
    Sumanasekera, G.U., Pradham, B.K., Adu, C.K.W., Romero, H.E., Foley, H.C., Eklund, P.C.: Mol. Cryst. Liq. Cryst. 387, 255 (2002)Google Scholar
  321. 321.
    Modi, A., Koratkar, N., Lass, E., Wei, B.Q., Ajayan, P.M.: Miniaturized gas ionization sensors using carbon nanotubes. Nature (London). 424, 171 (2003)CrossRefGoogle Scholar
  322. 322.
    Dharap, P., Zhiling, L., Nagarajaiah, S., Barrera, E.V.: Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnol. 15, 379–382 (2004)CrossRefGoogle Scholar
  323. 323.
    Lee, C., Liu, X., Zhou, C.: Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79(20), (2001)Google Scholar
  324. 324.
    De La Zerda, A., et al.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557 (2008)CrossRefGoogle Scholar
  325. 325.
    Shi Kam, N.W., Jessop, T.C., Wender, P.A., Dai, H.: Nanotube molecular transporters: internalization of carbon nanotube-proteinconjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRefGoogle Scholar
  326. 326.
    Cai, D., Mataraza, J.M., Qin, Z.H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)CrossRefGoogle Scholar
  327. 327.
    Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefGoogle Scholar
  328. 328.
    Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)CrossRefGoogle Scholar
  329. 329.
    Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45, 577–581 (2006)CrossRefGoogle Scholar
  330. 330.
    Shao, N., Lu, S.X., Wickstrom, E., Panchapakesan, B.: Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnol. 18, 315101 (2007)CrossRefGoogle Scholar
  331. 331.
    Guiseppi-Elie, A., Lei, C.H., Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol. 13, 559–564 (2002)CrossRefGoogle Scholar
  332. 332.
    Pantarotto, D., Partidos, C.D., Graff, R., Hoebeke, J., Briand, J.P., Prato, M., Bianco, A.: Synthesis, Structural characterization and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003)CrossRefGoogle Scholar
  333. 333.
    Liu, Z., Winters, M., Holodniy, M., Dai, H.J.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)CrossRefGoogle Scholar
  334. 334.
    Dean, D.A., Strong, D.D., Zimmer, W.E.: Nuclear entry of nonviral vectors. Gene. Ther. 12, 881–890 (2005)CrossRefGoogle Scholar
  335. 335.
    Luo, D.: A new solution for improving gene delivery. Trends Biotechnol. 22, 101–103 (2004)CrossRefGoogle Scholar
  336. 336.
    Schmidt-Wolf, G.D., Schmidt-Wolf, I.G.: Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol. Med. 9, 67–72 (2003)CrossRefGoogle Scholar
  337. 337.
    Chaudhuri, A. (ed.): Special issue: cationic transfection lipids. Curr. Med. Chem. 10, 1185–1315 (2003)Google Scholar
  338. 338.
    Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.P., Prato, M., Kostarelos, K., Bianco, A.: Functionalised carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed. Engl. 43, 5242–5246 (2004)CrossRefGoogle Scholar
  339. 339.
    Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partido, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: towards the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005)CrossRefGoogle Scholar
  340. 340.
    Bianco, A., Hoebek, E.J., Godefroy, S., Chaloin, O., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., Partidos, C.D.: Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 127, 58–59 (2005)CrossRefGoogle Scholar
  341. 341.
    Lu, Q., Moore, J.M., Huang, G., Mount, A.S., Rao, A.M., Larcom, L.L., Ke, P.C.: RNA polymer translocation with single-walled carbon nanotubes. Nano. Lett. 4, 2473–2477 (2004)CrossRefGoogle Scholar
  342. 342.
    Wu, W., Wieckowski, S., Pastorin, G., Klumpp, C., Benincasa, M., Briand, J.P., Gennaro, R., Prato, M., Bianco, A.: Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes. Angew Chem. Int. Ed. Engl. 44(39), 6358–6352 (2005., in press). https://doi.org/10.1002/anie.200501613 CrossRefGoogle Scholar
  343. 343.
    Yinghuai, Z., Peng, A.T., Carpenter, K., Maguire, J.A., Hosmane, N.S., Takagaki, M.: Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc. 127, 9875–9880 (2005)CrossRefGoogle Scholar
  344. 344.
    Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., Shibe, K.: Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 399–405 (2004)Google Scholar
  345. 345.
    Liu, Z., Sun, X., Jakayama-Ratchford, N., Dai, H.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1, 50 (2007)CrossRefGoogle Scholar
  346. 346.
    Matson, M.L., Wilson, L.J.: Nanotechnology and MRI contrast enhancement. Future Med. Chem. 2(3), 491–502 (2010). https://doi.org/10.4155/fmc.10.3. PMID 21426177
  347. 347.
    Wang, J.X., Li, M.X., Shi, Z.J., Li, N.Q., Gu, Z.N.: Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74, 1993 (2002)CrossRefGoogle Scholar
  348. 348.
    Davis, J.J., Coles, R.J., Hill, H.A.O.: Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440, 279 (1997)Google Scholar
  349. 349.
    Wang, G., Xu, J.J., Chen, H.Y.: Interfacing cytochrome c to electrodes with a DNA—carbon nanotube composite film. Electrochem. Commun. 4, 506 (2002)CrossRefGoogle Scholar
  350. 350.
    Zhao, G.C., Zhang, L., Wei, X. W., Yang, Z.S.: Electrochem. Commun. 5, 825 (2003)Google Scholar
  351. 351.
    Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochemical. Commun. 5, 408 (2003)CrossRefGoogle Scholar
  352. 352.
    Wang, L., Wang, J.X., Zhou, F.M.: Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis. 16, 627 (2004)CrossRefGoogle Scholar
  353. 353.
    Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009)CrossRefGoogle Scholar
  354. 354.
    Kocabas, C., Pimparkar, N., Yesilyurt, O., Kang, S.J., Alam, M.A., Rogers, J.A.: Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195–1202 (2007)CrossRefGoogle Scholar
  355. 355.
    Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube transistors. Nature. 424, 654–657 (2003)CrossRefGoogle Scholar
  356. 356.
    Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular trasnisters and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319–1322 (2004)CrossRefGoogle Scholar
  357. 357.
    Gabriel, J.-C.P.: 2d Random networks of carbon nanotubes. C.R. Phys. 11(5–6), 362–374 (2010)CrossRefGoogle Scholar
  358. 358.
    Gabriel, J.-C.P.: Large scale production of carbon nanotube transistors: a generic platforms for chemical sensors. Mat. Res. Soc. Symp. Proc. 762, Q.12.7.1 (2003)Google Scholar
  359. 359.
    Nanomix Elab System: Fast and fully automated point of care diagnostic system. http://www.nano.com. Accessed 30 Sept 2016
  360. 360.
    Gabriel, J.-C.P.: Dispersed growth of nanotubes on a substrate, Patent WO 2004040671A2, 10 Aug 2005Google Scholar
  361. 361.
    Bradley, K., Gabriel, J.-C.P., Grüner, G.: Flexible nanotube transistors. Nano Lett. 3(10), 1353–1355 (2003)CrossRefGoogle Scholar
  362. 362.
    Armitage, P. N., Bradley, K., Gabriel, J. -C. P., Grüner, G.: Flexible nanostructure electronic devices. US 8456074, 25 Aug 2005.Google Scholar
  363. 363.
    Franklin, A.D., et al.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758 (2012)CrossRefGoogle Scholar
  364. 364.
    Cao, Q., et al.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454, 495 (2008)CrossRefGoogle Scholar
  365. 365.
    Park, H., et al.: High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787 (2012)CrossRefGoogle Scholar
  366. 366.
    McCarthy, M.A., et al.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science. 332, 570 (2011)CrossRefGoogle Scholar
  367. 367.
    Cao, Q., Kim, H.S., Pimparkar, N., Kulkarni, J.P., Wang, C.J., Shim, M., Roy, K., Alam, M.A., Rogers, J.A.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454, 495 (2008)CrossRefGoogle Scholar
  368. 368.
    Kocabas, C., Kim, H.S., Banks, T., Rogers, J.A., Pesetski, A.A., Baumgardner, J.E., Krishnaswamy, S.V., Zhang, H.: Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U.S.A. 105, 1405 (2008)CrossRefGoogle Scholar
  369. 369.
    Chimot, N., Derycke, V., Goffman, M.F., Bourgoin, J.P., Happy, H., Dambrine, G.: Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 91, 153111 (2007)CrossRefGoogle Scholar
  370. 370.
    Kang, S.J., Kocabas, C., Kim, H.S., Cao, Q., Meitl, M.A., Khang, D.Y., Rogers, J.A.: Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano. Lett. 7, 3343 (2007)CrossRefGoogle Scholar
  371. 371.
    Katz, E., Willner, I.: Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem. 5(8), 1084–1104 (2004)CrossRefGoogle Scholar
  372. 372.
    Rinzler, A., Hafner, J.H., Nikolaev, P., Lou, L., Kim, D.G., et al.: Unraveling nanotubes: field emission from an atomic wire. Science. 269, 1550–1553 (1995)CrossRefGoogle Scholar
  373. 373.
    Saito, Y., Hamaguchi, K., Hata, K., Uchida, K., Tasaka, Y., et al.: Conical beams from open nanotubes. Nature. 389, 554–555 (1997)CrossRefGoogle Scholar
  374. 374.
    De Vita, A., Charlier J.C., Blase, X., Car, R.: Appl. Phys. A 68, 283–86 (1999)Google Scholar
  375. 375.
    Saito, Y., Uemura, S., Hamaguchi, K.: Jpn. J. Appl. Phys. 37, L346–48 (1998)Google Scholar
  376. 376.
    Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., Okuyama, F.: Carbon nanotubes as electron source in an x-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)CrossRefGoogle Scholar
  377. 377.
    Lee, N.S., Chung, D.S., Han, I.T., Kang, J.H., Choi, Y.S., Kim, H.Y., Park, S.H., Jin, Y.W., Yi, W.K., Yun, M.J., Jung, J.E., Lee, C.J., You, J.H., Jo, S.H., Lee, C.G., Kim, J.M.: Application of carbon nanotubes to field emission displays. Diamond Relat. Mater. 10, 265–270 (2001)CrossRefGoogle Scholar
  378. 378.
    Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. App. Phys. Lett. 75(20), 3129–3131 (1999)CrossRefGoogle Scholar
  379. 379.
    Lee, Y.H., Lim, S.C., An, K.H., Kim, W.S., Jeong, H.J., et al.: New Diamond Front. Carbon Technol. 12, 181–207 (2002)Google Scholar
  380. 380.
    Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K.: Carbon 38, 183–197 (2000)Google Scholar
  381. 381.
    Rotman, D.: Tech. Rev. 38–45 (2002)Google Scholar
  382. 382.
    Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.H.: Appl. Phys. Lett. 72(2912), 499–400.1998,Google Scholar
  383. 383.
    Yue, G.Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., et al.: Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81, 355–357 (2002)CrossRefGoogle Scholar
  384. 384.
    Lee, N.S., Chung, d.S., Han, I.T., Kang, J.H., Choi, Y.S., et al.: Application of carbon nanotubes to field emission displays. Diamond Rel. Mater. 10, 265–270 (2001)CrossRefGoogle Scholar
  385. 385.
    Wu, Z., et al.: Transparent, conductive carbon nanotube films. Science. 305, 1273 (2004)CrossRefGoogle Scholar
  386. 386.
    De, S., Coleman, J.N.: The effects of percolation in nanostructured transparent conductors. MRS Bull. 36, 774 (2011)CrossRefGoogle Scholar
  387. 387.
    Polytechnic University of Catalonia: Transparent conductive coatings based on carbon nanotubes. https://upcommons.upc.edu/bitstream/handle/2099.1/6114/Transparent%20Conductive%20C...%20based%20on%20Carbon%20Nanotubes.pdf;sequence=1. Accessed 4 Oct 2016
  388. 388.
    Pennsylvania State University: Carbon nanotube based transparent conductive coatings. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5774&rep=rep1&type=pdf. Accessed 4 Oct 2016
  389. 389.
    Berkei, M.: Conductive coatings using carbon nanotubes: a fascinating material for the coating producer’s toolbox. Chemicals. 7–8, 10 (2011)Google Scholar
  390. 390.
    Akhmadishina, K.F., Bobrinetskii, I.I., Ibragimov, R.A., Komarov, I.A., Malovichko, A.M., Nevolin, V.K., Petukhov, V.A.: Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes. Inorganic Materials. 50(1), 23–28 (2014)CrossRefGoogle Scholar
  391. 391.
    Janas, D., Herman, A.P., Boncel, S., Koziol, K.K.: Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon. 73, 225–233 (2014)CrossRefGoogle Scholar
  392. 392.
    Yao, Z., Wei, J., Vajtai, R., Ajayan, P.M., Barrera, E.V.: Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. (Nature). 1, 83 (2011)CrossRefGoogle Scholar
  393. 393.
    Subramaniam, C., Yamada, T., Kobashi, K., Sekiguchi, A., Futaba, D.N., Yumura, M., Hata, K.: One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 4, (2013)Google Scholar
  394. 394.
    Hamada, N., Sawada, A., Oshiyama, A.: A new one-dimensional conductor: graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)CrossRefGoogle Scholar
  395. 395.
    Geerligs, L.J., Harmans, C.J., Kouwenhoven, L.P.: The physics of few-electron nanostructures. North-Holland, Amsterdam (1993)Google Scholar
  396. 396.
    Ando, T.: Theory of Electronic States and Transport in Carbon Nanotubes. J. Phys. Soc. Jpn. 74(3), 777–817 (2005)CrossRefGoogle Scholar
  397. 397.
    Akera, H., Ando, T.: Phys. Rev. B. 43, 11676 (1991)Google Scholar
  398. 398.
    Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today. 52(5), 22–28 (1999)CrossRefGoogle Scholar
  399. 399.
    White, C.T., Todorov, T.N.: Carbon nanotubes as long ballistic conductors. Nature. 393, 240 (1998)CrossRefGoogle Scholar
  400. 400.
    Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhögl, W., Liebau, M., Unger, E., Hönlein, W.: Carbon nanotubes in interconnect applications. Microelectron. Eng. 64, 399 (2002)CrossRefGoogle Scholar
  401. 401.
    Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D., Wang, J.N., Chan, C.T., Sheng, P.: Superconductivity in 4 angstrom single-walled carbon nanotubes. Science. 292, 2462–2465 (2001)CrossRefGoogle Scholar
  402. 402.
    Camilli, L., Pisani, C., Gautron, E., Scarselli, M., Castrucci, P., D’Orazio, F., Passacantando, M., Moscone, D., De Crescenzi, M.: A three-dimensional carbon nanotube network for water treatment. Nanotechnol. 25(6), 1–3 (2014)CrossRefGoogle Scholar
  403. 403.
    Hashim, D.P., Narayanan, N.T., Romo-Herrera, J.M., Cullen, D.A., Hahm, M.H., Lezzi, P., Suttle, J.R., Kelkhoff, D., Muñoz-Sandoval, E., Ganguli, S., Roy, A.K., Smith, D.J., Vajtai, R., Sumpter, B.G., Meunier, V., Terrones, H., Terrones, M., Ajayan, P.M.: Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep.. 2, (2012)Google Scholar
  404. 404.
    Zhang, S., Shao, T., Selcen Kose, H., Karanfil, T.: Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ. Sci. Technol. 44(12), 6377–6383 (2010)CrossRefGoogle Scholar
  405. 405.
    Fasano, M., Chiavazzo, E., Asinari, P.: Water transport control in carbon nanotube arrays. Nanoscale Res. Lett. 9(1), 559 (2014)CrossRefGoogle Scholar
  406. 406.
    Gethard, K., Sae-Khow, O., Mitra, S.: Water deslination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces. 3(2), 110 (2011)CrossRefGoogle Scholar
  407. 407.
    Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B. 112, 1427 (2008)CrossRefGoogle Scholar
  408. 408.
    Dumée, L.F., Sears, K., Schütz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., Gray, S.: Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Membraine Sci. 351, 36 (2010)CrossRefGoogle Scholar
  409. 409.
    Gao, G., Vecitis, C.D.: Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ. Sci. Technol. 45, 9726 (2011)CrossRefGoogle Scholar
  410. 410.
    Rahaman, M.S., Vecitis, C.D., Elimelech, M.: Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 46, 1556 (2012)CrossRefGoogle Scholar
  411. 411.
    Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R., Ajayan, P.M.: Carbon nanotube filters. Nat. Mater. 3, 610 (2004)CrossRefGoogle Scholar
  412. 412.
    Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L., Elimelech, M.: Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res. 44, 3773 (2010)CrossRefGoogle Scholar
  413. 413.
    Brady-Estéves, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small. 4, 481 (2008)CrossRefGoogle Scholar
  414. 414.
    Seldon Water: Carbon nanotube technology: the science behind our products. Accessed June 2016Google Scholar
  415. 415.
    Herrera-Herrara, A.V., González-Curbelo, M.Á., Hérnandez-Borges, J.: Carbon nanotubes applications in separation science: a review. Analytica Chimica Acta. 734, 1–30 (2012)CrossRefGoogle Scholar
  416. 416.
    Wang, S.: Optimum degree of functionalization for carbon nanotubes. Curr. Appl. Phys. 9, 1146–1150 (2009)CrossRefGoogle Scholar
  417. 417.
    Safavi, A., Maleki, N., Doroodmand, M.M.: Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen. Anal. Chim. Acta. 675, 207–212 (2010)CrossRefGoogle Scholar
  418. 418.
    Speltini, A., Merli, D., Quartarone, E., Profumo, A.: Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized multi-walled carbon nanotubes as stationary phases. J. Chromatogr. A. 1217, 2918–2924 (2010)CrossRefGoogle Scholar
  419. 419.
    Hussain, C.M., Saridara, C., Mitra, S.: Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Anal. Chem. 82, 5184–5188 (2010)CrossRefGoogle Scholar
  420. 420.
    Merli, D., Speltini, A., Ravelli, D., Quartarone, E., Costa, L., Profumo A.: J. Chromatogr. A 1218, 7275–7281 (2010)Google Scholar
  421. 421.
    Zhao, L., Ai, P., Duan, A.H., Yuan, L.M.: Single-walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC. Anal. Bioanal. Chem. 399, 143–147 (2011)CrossRefGoogle Scholar
  422. 422.
    Na, N., Cui, X., De Beer, T., Li, T., Tang, T., Sajid, M., Ouyang, J.: The use of silica nanoparticles for gas chromatographic separation. J. Chromatogr. A. 1218, 4552–4558 (2011)CrossRefGoogle Scholar
  423. 423.
    Hussain, C.M., Saridara, C., Mitra, S.: Altering the polarity of self-assembled carbon nanotubes stationary phase via covalent functionalization. RSC Adv. 1, 685–689 (2011)CrossRefGoogle Scholar
  424. 424.
    Speltini, A., Merli, D., Dondi, D., Paganini, G., Profumo, A.: Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase. Anal. Bioanal. Chem. 403, 1157–1165 (2012) https://doi.org/10.1007/s00216-011-5606-y
  425. 425.
    André, C., Gharbi, T., Guillaume, Y.C.: A novel stationary phase based on amino derivatized nanotubes for hplc separations: Theoretical and practical aspects. J. Sep. Sci. 32, 1757–1764 (2009)CrossRefGoogle Scholar
  426. 426.
    Liang, X., Liu, S.H., Liu, X., Jiang, S.: J. Sep. Sci. 33, 3304–3312 (2010)Google Scholar
  427. 427.
    Zhong, Y., Zhou, W., Zhang, P., Zhu, Y.: Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers. Talanta. 82, 1439–1447 (2010)CrossRefGoogle Scholar
  428. 428.
    Chambers, S.D., Svec, F., Frechet, J.M.J.: Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A. 1218, 2546–2552 (2011)CrossRefGoogle Scholar
  429. 429.
    André, C., Aljhani, R., Gharbi, T., Guillaume, Y.C.: Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: theoretical and practical aspects. J. Sep. Sci. 34, 1221–1227 (2011)CrossRefGoogle Scholar
  430. 430.
    André, C., Agiovlasileti, D., Guillaume, Y.C.: Peculiarities of a novel bioenzymatic reactor using carbon nanotubes as enzyme activity enhancers: application to arginase. Talanta. 85, 2703 (2011)CrossRefGoogle Scholar
  431. 431.
    Yoo, J.T., Ozawa, H., Fujigaya, T., Nakashima, N.: Evaluation of affinity of molecules for carbon nanotubes. Nanoscale. 3, 2517–2522 (2011)CrossRefGoogle Scholar
  432. 432.
    Chen, J.L.: Multi-wall carbon nanotubes bonding on silica-hydride surfaces for open-tubular capillary electrochromatography. J. Chromatogr. A. 1217, 715–721 (2010)CrossRefGoogle Scholar
  433. 433.
    Chen, J.L., Lu, T.L., Lin, Y.C.: Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography. Electrophoresis. 31, 3217–3226 (2010)CrossRefGoogle Scholar
  434. 434.
    Chen, J.L., Hsieh, K.H.: Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices. Electrophoresis. 31, 3937–3948 (2010)CrossRefGoogle Scholar
  435. 435.
    Chen, J.L., Lin, Y.C.: The role of methacrylate polymerized as porous-layered and nanoparticle-bound phased for open-tubular capillary electrochromatography: substitution of a charged monomer for a bulk monomer. Electrophoresis. 31, 3949–3958 (2010)CrossRefGoogle Scholar
  436. 436.
    Stege, P.W., Sombra, L.L., Messina, G., Martinez, L.D., Silva, M.F.: Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis. 31, 2242–2248 (2010)CrossRefGoogle Scholar
  437. 437.
    Jiménez-Soto, J.M., Moliner-Martínez, Y., Cárdenas, S., Valcárcel, M.: Evaluation of the performance of single walled carbon nanohorns in capillary electrophoresis. Electrophoresis. 31, 1681–1688 (2010)CrossRefGoogle Scholar
  438. 438.
    Yu, J., Dushu, H., Kelong, H., Yong, H.: Preparation of hydroxypropyl-β-cyclodextrin cross-linked multi-walled carbon nanotubes and their application in enantioseparation of clenbuterol. J. Chem. 29, 893–897 (2011)Google Scholar
  439. 439.
    Reid, V.R., Stadermann, M., Bakajin, O., Synovec, R.E.: High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Talanta. 77, 1420–1425 (2009)CrossRefGoogle Scholar
  440. 440.
    Goswami, S., Bajwa, N., Asuri, P., Ci, L., Ajayan, P.M., Cramer, S.M.: Aligned carbon nanotube stationary phases for electrochromatographic chip separations. Chromatographia. 69, 473–480 (2009)CrossRefGoogle Scholar
  441. 441.
    Wu, R.G., Yang, C.S., Wang, P.C., Tseng, F.G.: Electrophoresis. 30, 2024–2031 (2009)Google Scholar
  442. 442.
    Moigensen, K.B., Chen, M., Molhave, K., Boggild, P., Kutter, J.P.: Lab Chip 2116–2118 (2011)Google Scholar
  443. 443.
    Shrivas, K., Wu, H.-F.: Multifunctional nanoparticles composite for MALDI-MS: Cd2+ doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis. J. Mass Spectrom. 45, 1452–1460 (2010)CrossRefGoogle Scholar
  444. 444.
    Yang, H.-J., Lee, A., Lee, M.-Y., Kim, W., Kim, J.: Bull. Korean Chem. Soc. 31, 35–40 (2010)Google Scholar
  445. 445.
    Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R.: Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem. 82, 5518–5526 (2010)CrossRefGoogle Scholar
  446. 446.
    Wei, Y.-L., Zhou, W., Liu, F., Ren, Z.-Y., Zhang, L.-Y., Du, Y.-P., Guo, Y.-L., Chem. J. Chinese U. 31, 1729–1733 (2010)Google Scholar
  447. 447.
    Li, X.-S., Wu, J.-H., Xu, L.-D., Zhao, Q., Luo, Y.-B., Yuan, B.-F., Feng, Y.-Q.: Chem. Commun. 47, 9816–9818 (2011)Google Scholar
  448. 448.
    Tang, H.-W., Ng, K.-M., Lu, W., et al.: Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates. Anal. Chem. 81, 4720–4729 (2009)CrossRefGoogle Scholar
  449. 449.
    Hsu, W.-Y., Lin, W.-D., Hwu, W.-L., Lai, C.-C., Tsai, F.-J.: Anal. Chem. 82, 6814–6820 (2010)Google Scholar
  450. 450.
    Lee, J., Kim, Y.-K., Min, D.-H.: J. Am. Chem. Soc. 132, 14714–14717 (2010)Google Scholar
  451. 451.
    Kim, Y.-K., Na, H.-K., Kwack, S.-J., Ryoo, S.-R., Lee Y., Hong, S., Hong, S., Jeong, Y., Min, D.-H.: ACS Nano 5, 4550–4561 (2011)Google Scholar
  452. 452.
    Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Carbon. 23, 6453 (2007)Google Scholar
  453. 453.
    Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001)CrossRefGoogle Scholar
  454. 454.
    Jiang, L., Gu, H., Xu, X., Yan, X.: J. Mol. Catal. A-Chem. 310, 144 (2009)Google Scholar
  455. 455.
    Pawelec, B., La Parola, V., Navarro, R.M., Murcia-Mascaros, S., Fierro, J.L.G.: On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics. Carbon. 44, 84 (2006)CrossRefGoogle Scholar
  456. 456.
    Yoon, B., Pan, H.-B., Wai, C.M.: Relative catalytic activities of carbon nanotube-supported metallic nanoparticles for room-temperature hydrogenation of benzene. J. Phys. Chem. C. 113, 1520 (2009)CrossRefGoogle Scholar
  457. 457.
    Tan, X., Deng, W., Liu, M., Zhang, Q., Wang, Y.: Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem. Commun. (46), 7179 (2009)Google Scholar
  458. 458.
    Sullivan, J.A., Flanagan, K.A., Hain, H.: Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal. Today. 145, 108 (2009)CrossRefGoogle Scholar
  459. 459.
    Baleizao, C., Gigante, B., Garcia, H., Corma, A.: Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes. J. Catal. 221, 77 (2004)CrossRefGoogle Scholar
  460. 460.
    Carol, L.: Carbon SUPER-SPRINGS, Mechanical Engineering (2010)Google Scholar
  461. 461.
    Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  462. 462.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  463. 463.
    Fitzer, E., Kochling, K.-H., Boehm, H.P., Marsh, H.: Recommended terminology for the description of carbon as a sold (IUPAC Recommendations 1995). Pure Appl. Chem. 67(3), 473–506 (2009)Google Scholar
  464. 464.
    Moura, S., et al.: Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minérale. 24, 572 (1987)Google Scholar
  465. 465.
    The Official Web Site of the Nobel Prize: Graphene – the perfect atomic lattice. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html. Accessed June 2016
  466. 466.
    Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das Adsoprtionsverhealten sehr dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie. 316(3-4), 119–127 (1962)CrossRefGoogle Scholar
  467. 467.
    Boehem, H.P., Clauss, A., Fischer, G., Hofmann, U., Surface properties of extremely thin graphite lamellae. In: Proceedings of the Fifth Conference on Carbon (1961)Google Scholar
  468. 468.
    Graphene Times: Boehm’s 1961 isolation of graphene. Acessed June 2016Google Scholar
  469. 469.
    Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. London. 149, 249–259 (1859)CrossRefGoogle Scholar
  470. 470.
    Wallace, P.R.: The band structure of graphite. Phys. Rev. 71, 622–634 (1947)CrossRefGoogle Scholar
  471. 471.
    Ruess, G., Vogt, F.: Höchstlamellarer Kohlenstoff aus Graphitohydroxyd. Monatshefte für Chemie. 78, 222–242 (1948)CrossRefGoogle Scholar
  472. 472.
    Oshima, C., Nagashima, A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter. 9, 1–20 (1997)CrossRefGoogle Scholar
  473. 473.
    Jang, B.Z., Huang, W.C.: Nano-scaled graphene plates. US 7071258 B1, 4 July 2006Google Scholar
  474. 474.
    Affoune, A.M., Prasad, B.L.V., Sato, H., Enoki, T., Kaburagi, Y., Hishiyama, Y.: Experimental evidence of a single nano-graphene. Chem. Phys. Lett. 348, 17 (2001)CrossRefGoogle Scholar
  475. 475.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  476. 476.
    Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, L.A., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.-C., Terrones, H.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today. 5, 351–372 (2010)CrossRefGoogle Scholar
  477. 477.
    Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X., Ajayan, P.M., Zhu, T., Lou, J.: Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014)Google Scholar
  478. 478.
    Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., Freilikher, V., Nori, F.: Electronic properties of mesoscopic graphene structures: change confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)CrossRefGoogle Scholar
  479. 479.
    Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)CrossRefGoogle Scholar
  480. 480.
    Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale. 5, 38 (2013)CrossRefGoogle Scholar
  481. 481.
    Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  482. 482.
    (a) Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature. 446, 60 (2007); (b) Pop, E., Roy, A.K., Varshney, V.: Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37, 1273 (2012); (c) Thermal Conductivity. http://ndl.ee.ucr.edu/MRS-Talk-09.pdf. Accessed June 2016
  483. 483.
    (a) Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morosov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451 (2005); (b) Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T. J., Geim, A.K.: Appl. Phys. Lett. 91, 063124 (2007)Google Scholar
  484. 484.
    Stolyarova, E., Taegh, R.K., Ryu, S., Maultzsch, J., Kim, P., Brus, L.E., Heinz, T.F., Hybertsen, M.S., Flynn, G.W.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA. 104, 9209 (2007)CrossRefGoogle Scholar
  485. 485.
    Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582 (2008)CrossRefGoogle Scholar
  486. 486.
    Talukdar, Y., Rashkow, J.T., Lalwani, G., Kanakia, S., Sitharaman, B.: The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials. 35(18), 4863–4877 (2014)CrossRefGoogle Scholar
  487. 487.
    News from Brown: Jagged Graphene can slice into cell membranes. https://news.brown.edu/articles/2013/07/graphene. Accessed 4 Oct 2016
  488. 488.
    Li, Y., Yuan, H., von Dem Bussche, A., Creighton, M., Hurt, R.H., Kane, A.B., Gao, H.: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. 110(30), 12295–12300 (2013)CrossRefGoogle Scholar
  489. 489.
    Mullick Chodhury, S., Lalwani, G., Zhang, K., Yang, J.O., Neville, K., Sitharaman, B.: Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 34(1), 283–293 (2013)CrossRefGoogle Scholar
  490. 490.
    Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., et al.: Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 1 (2010)Google Scholar
  491. 491.
    Akhavan, O., Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4, 5731 (2010)CrossRefGoogle Scholar
  492. 492.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the Elastic Properities and Intrinsic Strength of Monolayer Graphene. Science. 5887, 385–388 (2008.) Frank, I.W., Tanenbaum, D. M., Van Der Zande, A.M., McEuen, P.L.: Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B, 25(6), 2558–2561 (2007)CrossRefGoogle Scholar
  493. 493.
    Hill, E.W., Vijayaragahvan, A., Novoselov, K.: Graphene sensors. IEEE Sens. J. 11(12), 3161–3170 (2011)CrossRefGoogle Scholar
  494. 494.
    Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  495. 495.
    Poot, M., van der Zant, H.S.J.: Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 92(6), 063111–063113 (2008)CrossRefGoogle Scholar
  496. 496.
    Scott, A.: Graphene’s global race to market. Chem. Eng. News. 94(15), 28–33 (2016)Google Scholar
  497. 497.
    Graphene Flagship: http://graphene-flagshup.eu/. Accessed June 2016
  498. 498.
    IDTechEx: Graphene & 2D Materials Europe. http://www.idtechex.com/graphene-europe/show/en/. Accessed June 2016
  499. 499.
    IDtechEx: Event Highlights. http://www.idtechex.com/events/summary/E16/. Accessed June 2016
  500. 500.
    EV and More: Production of revolutionary graphene batteries begins in Spain. http://blog.evandmore.com/production-of-revolutionary-graphene-batteries-begins-in-spain/. Accessed June 2016
  501. 501.
    Vorbeck: RFID. http://vorbeck.com/pages/products-rfid. Accessed June 2016
  502. 502.
    Vorbeck: Antennas. http://vorbeck.com/pages/products-antennas. Accessed June 2016
  503. 503.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Phyical properies of carbon nanotubes. Imperial College Press (1998)Google Scholar
  504. 504.
    Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B. 79, 155413 (2009)CrossRefGoogle Scholar
  505. 505.
    Savchenko, A.: Transforming graphene. Science. 323, 589–590Google Scholar
  506. 506.
    Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)CrossRefGoogle Scholar
  507. 507.
    Zhang, Y., Tan, Y., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 438, 201 (2005)CrossRefGoogle Scholar
  508. 508.
    Novoselov, K.S., McCann, E., Morosov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., et al.: Unconventional quantum Hall effect and Berry’s phase of 2 pi in bilayer graphene. Nat. Phys. 2, 177 (2006)CrossRefGoogle Scholar
  509. 509.
    Akturk, A., Goldsman, N.: Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103(5), 053702 (2008)CrossRefGoogle Scholar
  510. 510.
    Morosov, S.V., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)CrossRefGoogle Scholar
  511. 511.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438(7065), 197–200 (2005)CrossRefGoogle Scholar
  512. 512.
    Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nat. Nanotechnol. 3(4), 206–209 (2008)CrossRefGoogle Scholar
  513. 513.
    Neto, A.C., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  514. 514.
    Sagade, A.A., et al.: Highly air stable passivation of graphene based field effect devices. Nanoscale. 7, 3558–3564 (2015)CrossRefGoogle Scholar
  515. 515.
    Evaldsson, M., Zozoulenko, I.V., Xu, H., Heinzel, T.: Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B. 78, 161407 (2008)CrossRefGoogle Scholar
  516. 516.
    Cervantes-Sodi, F., Csanyi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys. Rev. B. 77, 165427 (2008)CrossRefGoogle Scholar
  517. 517.
    Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nat. Lett. 459, 820–823 (2009)CrossRefGoogle Scholar
  518. 518.
    Lui, C.H., Zhiqiang, L., Mak, K.F., Cappelluti, E., Heinz, T.F.: Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011)CrossRefGoogle Scholar
  519. 519.
    Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151 (2008)CrossRefGoogle Scholar
  520. 520.
    Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb Carbon: A Review of Graphene. Chem. Rev. 110, 132–145 (2010)CrossRefGoogle Scholar
  521. 521.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  522. 522.
    Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science. 313(5789), 951–954 (2006)CrossRefGoogle Scholar
  523. 523.
    Kaiser, A.B., Gómez-Navarro, C., Sundaram, R.S., Burghard, M., Kern, K.: Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9(5), 1787–1792 (2009)CrossRefGoogle Scholar
  524. 524.
    Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Lang, J., Chen, Y.: Room-temperature ferromagnetism of graphene. Nano Lett. 9(1), 220–224 (2009)CrossRefGoogle Scholar
  525. 525.
    Ghosh, S., Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Heat conduction in graphene: experimental study and theoretical interpretation. New J. Phys. 11, 1–18 (2009)CrossRefGoogle Scholar
  526. 526.
    Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 25(10), 1645–1651 (2010)CrossRefGoogle Scholar
  527. 527.
    Xu, X., Periera, L.F.C., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh Bui, C., Xie, R., Thong, J.T.L., Hong, B.H., Loh, K.P., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2004)Google Scholar
  528. 528.
    Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., Shi, L.: Two-dimensional phonon transport in supported graphene. Science. 328, 213–216 (2010)CrossRefGoogle Scholar
  529. 529.
    Balandin, A., Wang, K.L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B. 58, 1544 (1998)CrossRefGoogle Scholar
  530. 530.
    Zou, J., Balandin, A.: Phonon heat conduction in a semiconductor nanowires. J. Appl. Phys. 89, 2932 (2001)CrossRefGoogle Scholar
  531. 531.
    Ghosh, S., Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Heat conduction in graphene: experimental study and theoretical interpretation. New J. of Phys. 11, 1–18 (2009)CrossRefGoogle Scholar
  532. 532.
    Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today. 60(8), 45–41 (2007)Google Scholar
  533. 533.
    Alzari, V., Nuvoli, D., Scognamillo, S., Piccinini, M., Gioffredi, E., Malucelli, G., Marceddu, S., Sechi, M., Sanna, V., Mariana, A.: Graphene-containing thermoresponsive nanocomposite hydrogels of ply(N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)CrossRefGoogle Scholar
  534. 534.
    Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S.B., Piccinini, M., Illescas, J., Mariani, A.: High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428–3431 (2011)CrossRefGoogle Scholar
  535. 535.
    Vallés, C., Drummond, C., Saadaoi, H., Furtado, C.A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., Penicaud, A.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802 (2008)CrossRefGoogle Scholar
  536. 536.
    Kamali, A.R., Fray, D.J.: Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon. 56, 121–131 (2013)CrossRefGoogle Scholar
  537. 537.
    Kamali, A.R., Fray, D.J.: Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale. 7, 11310–11320 (2015)CrossRefGoogle Scholar
  538. 538.
    Hamilton, C.E., Lomeda, J.R., Sun, Z., Tour, J.M., Barron, A.R.: High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9, 3460 (2009)CrossRefGoogle Scholar
  539. 539.
    Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A., Stubos, A.K.: Liquid-phase exfoliation of graphite towards solubilized graphenes. Small. 5, 1841 (2009)CrossRefGoogle Scholar
  540. 540.
    Woltornist, S.J., Oyer, A.J., Carrillo, J.-M.Y., Dobrynin, A.V., Adamson, D.H.: Conductive thin films of pristine graphene by solvent interface trapping. ACS Nano. 7(8), 7062–7066 (2013)CrossRefGoogle Scholar
  541. 541.
    Dhakate, S.R., Chauhan, N., Sharma, S., Tawale, J., Singh, S., Sahare, P.D., Mathur, R.B.: An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon. 49, 1946–1954 (2011)CrossRefGoogle Scholar
  542. 542.
    Safavi, A., Tohidi, M., Mahyari, F.A., Shahbaazi, H.: J. Mater. Chem. 22, 3825–3831 (2012)Google Scholar
  543. 543.
    Pu, N.-W., Wang, C.-A., Sung, Y., Liu, Y.-M., Ger, M.-D.: Mater. Lett. 63, 1987–1989 (2009)Google Scholar
  544. 544.
    Li, X.L., Wang, X.R., Zhang, L., Lee, S.W., Dai, H.J.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 319, 1229 (2008)CrossRefGoogle Scholar
  545. 545.
    JAyasena, B., Sathyan, S.: A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6, 95 (2011)CrossRefGoogle Scholar
  546. 546.
    Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)CrossRefGoogle Scholar
  547. 547.
    Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 110, 8535 (2006)CrossRefGoogle Scholar
  548. 548.
    Hofmann, M., Chiang, W.-Y., Nguyễn, T.D., Hiseh, Y.-P.: Controlling the properties of graphene produced by electrochemical exfoliation – IOPscience. Nanotechnol. 26, 334607 (2015)Google Scholar
  549. 549.
    Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., Yao, J.: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon. 47, 3242–3246 (2009)CrossRefGoogle Scholar
  550. 550.
    Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A.N., Li, L.-J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano. 5, 2332–2339 (2011)CrossRefGoogle Scholar
  551. 551.
    Wang, J., Manga, K.K., Bao, Q., Loh, K.P.: High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)CrossRefGoogle Scholar
  552. 552.
    Suslick, K.S., Price, G.J.: Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)CrossRefGoogle Scholar
  553. 553.
    Paton, K.R., et al.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)CrossRefGoogle Scholar
  554. 554.
    Sutter, P.W., Flege, J., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008)CrossRefGoogle Scholar
  555. 555.
    Wei, D., Liu, Y., Zhang, H., Huang, L., Wu, B., Chen, J., Yu, G.: Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 131, 11147–11154 (2009)CrossRefGoogle Scholar
  556. 556.
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dressel Haus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009)CrossRefGoogle Scholar
  557. 557.
    Caltech: Caltech scientists develop cool process to make better graphene. https://www.caltech.edu/news/caltech-scientists-develop-cool-process-make-better-graphene-45961. Accessed June 2016
  558. 558.
    Electronics Weekly: Good graphene over square centimetres without high temperatures. http://www.electronicsweekly.com/news/research-news/good-graphene-square-centimetres-without-high-temperatures-2015-03/. Accessed June 2016
  559. 559.
    Boyd, D.A., Lin, W.-H., Hsu, C.-C., Teague, M.-L., Chen, C.-C., Lo, Y.-Y., Chan, W.-Y., Su, W.-B., Cheng, T.-C., Chang, C.-S., Wu, C.-I., Yeh, N.-C.: Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 6, 6620 (2015)CrossRefGoogle Scholar
  560. 560.
    Bointon, T.H., Barnes, M.D., Russo, S., Carciun, M.F.: High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv. Mater. 27(28), 4200–4206 (2015)CrossRefGoogle Scholar
  561. 561.
    Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Tendeloo, G.V., Vanhulsel, A., Haesendonck, C.V.: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnol. 19, 305604 (2008)CrossRefGoogle Scholar
  562. 562.
    Wang, J.J., Zhu, M.Y., Outlaw, R.A., Zhao, X., Manos, D.M., Holoway, B.C.: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265 (2004)CrossRefGoogle Scholar
  563. 563.
    Wang, J.J., Zhu, M.Y., Outlaw, R.A., Zhao, X., Manos, D.M., Holoway, B.C.: Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon. 42, 2867 (2004)CrossRefGoogle Scholar
  564. 564.
    Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis- of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752 (2009)CrossRefGoogle Scholar
  565. 565.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Changdra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRefGoogle Scholar
  566. 566.
    Chpucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30 (2009)CrossRefGoogle Scholar
  567. 567.
    Staudemaier, L.: Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481 (1898)CrossRefGoogle Scholar
  568. 568.
    Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490 (2008)CrossRefGoogle Scholar
  569. 569.
    Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008)CrossRefGoogle Scholar
  570. 570.
    Eigler, S., Enzelberger-Heim, M., Grimm, S., Hofmann, P., Kroener, W., Geworski, A., Dotzer, C., Röckert, M., Xiao, J., Papp, C., Lytken, O., Steinrück, H.-P., Hirsch, A.: Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)CrossRefGoogle Scholar
  571. 571.
    Athanasios, B., Bourlinos, D.G., Petridis, D., Szabo, T., Szeri, A., Dekany, I.: Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir. 19, 6050 (2003)CrossRefGoogle Scholar
  572. 572.
    Schniepp, H.c., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 110, 8535 (2006)CrossRefGoogle Scholar
  573. 573.
    McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007)CrossRefGoogle Scholar
  574. 574.
    Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394 (2007)CrossRefGoogle Scholar
  575. 575.
    Cote, L.J., Kim, F., Huang, J.: Langmuir−Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043 (2009)CrossRefGoogle Scholar
  576. 576.
    Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
  577. 577.
    Somani, P.R., Somani, S.P., Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006)CrossRefGoogle Scholar
  578. 578.
    Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H.J., Mullen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 42167 (2008)Google Scholar
  579. 579.
    Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K.: Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 47, 2990–2992 (2008)CrossRefGoogle Scholar
  580. 580.
    Simpson, C.D., Brand, J.D., Berresheim, A.J., Przybilla, L., Rader, H.J., Mullen, K.: Synthesis of a giant 222 carbon graphite sheet. Chem.-Eur. J. 8, 1424–1429 (2002)CrossRefGoogle Scholar
  581. 581.
    Chen, L., Hernandez, Y., Feng, X., Müllen, K.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRefGoogle Scholar
  582. 582.
    Tang, L., Li, X., Ji, R., Teng, K.S., Tai, G., Ye, J., Wei, C., Lau, S.P.: Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22(12), 5676 (2012)CrossRefGoogle Scholar
  583. 583.
    Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syväjä, M., Yakimova, R., Fal’ko, V., Tzalenchuk, A., Kubatkin, S.: SiC graphene suitable for quantum hall resistance metrology, Science Brevia (2009)Google Scholar
  584. 584.
    Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8(3), 171–172 (2009)CrossRefGoogle Scholar
  585. 585.
    Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4(1), 30–33 (2008)CrossRefGoogle Scholar
  586. 586.
    Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8, 171–172 (2009)CrossRefGoogle Scholar
  587. 587.
    Rolings, E., Gweon, G.-H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A.V., First, P.N., de Heer, W.A., Lanzara, A.: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids. 67, 2172 (2006)CrossRefGoogle Scholar
  588. 588.
    Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I.: Homogeneous large-area graphene layer growth on 6H -SiC(0001). Phys. Rev. B. 78, 245403 (2008)CrossRefGoogle Scholar
  589. 589.
    Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellog, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, D., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009)CrossRefGoogle Scholar
  590. 590.
    Kim, D.Y., Sinha-Ray, S., Park, J.-L., Lee, J.-G., Cha, Y.-H., Bae, S.-H., Ahn, J.-H., Jung, Y.C., Kim, S.M., Yarin, A.L., Yoon, S.S.: Supersonic spray creates high-quality graphene layer. Adv. Funct. Mater. 24(31), 4986–4995 (2014)CrossRefGoogle Scholar
  591. 591.
    MIT Technology Review: How to make graphne using supersonic buckyballs. https://www.technologyreview.com/s/539911/how-to-make-graphene-using-supersonic-buckyballs/. Accessed June 2016
  592. 592.
    Chiu, P.L., Mastrogiovanni, D.D.T., Wei, D., Lous, C., Jeong, M., Yu, G., Saad, P., Flach, C.R., Mendelsohn, R.: Microwave- and notrionium ion-enabled rapid and direct production of highly conductive low-oxygen graphene. J. Am. Chem. Soc. 134(13), 5850–5856 (2012)CrossRefGoogle Scholar
  593. 593.
    Patel, M., Feng, W., Svaram, K., Khoshi, M.R., Huang, R., Sun, J., Rabie, E., Flach, C., Mendelsohn, R., Garfunkel, E., He, H.: Microwave enabled one-pot, one-step fabrication and notrogen doping of holey graphene oxide for catalytic applications. Small. 11(27), 3358–3368 (2015)CrossRefGoogle Scholar
  594. 594.
    Kim, J., Lee, G., Kim, J.: Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation. Appl. Phys. Lett. 107(3), 033104 (2015)CrossRefGoogle Scholar
  595. 595.
    Campos-Delgado, J., Romo-Herrera, J.M., Jia, X., Cullen, D.A., Muramatsu, H., Kim, Y.A., Hayashi, T., Ren, Z., Smith, D.J., Okuno, Y., Ohba, T., Kanoh, H., Kaneko, K., Endo, M., Terrones, H., Dresselhaus, M.S., Terrones, M.: Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773 (2008)CrossRefGoogle Scholar
  596. 596.
    Kula, P., Pietrasik, R., Dybowski, K., Atraszkiewicz, R., Szymanski, W., Kolodziejczyk, L., Niedzielski, P., Nowak, D.: Single and multilayer growth of graphene from the liquid phase. Appl. Mech. Mater. 510, 8–12 (2014)CrossRefGoogle Scholar
  597. 597.
    Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C. 113, 4257–4259 (2009)CrossRefGoogle Scholar
  598. 598.
    Chen, Y., Zhao, H., Sheng, L., Yu, K., An, J., Xu, Y., Ando, Y., Zhao, X.: Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures. Chem. Phys. Lett. 538, 72–76 (2012)CrossRefGoogle Scholar
  599. 599.
    Shen, B., Ding, J., Yan, X., Feng, W., Li, J., Xue, Q.: Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Appl. Surf. Sci. 258, 4523–4531 (2012)CrossRefGoogle Scholar
  600. 600.
    Wang, X.K., Lin, X.W., Mesleh, M., JArrold, M.F., Dravid, V.P., Ketterson, J.B., Chang, R.P.H.: J. Mater. Res.I 10, 1977 (1995)Google Scholar
  601. 601.
    Wang, X.K., Lin, X.W., Dravid, V.P., Ketterson, J.B., Chang, R.P.H.: Carbon nanotubes synthesized in a hydrogen arc discharge. Appl. Phys. Lett. 66, 2430 (1995)CrossRefGoogle Scholar
  602. 602.
    Panchokarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., Rao, C.N.R.: Synthesis, structure, and properties of boronand nitrogen-doped graphene. Adv. Mater. 21, 4726 (2009)Google Scholar
  603. 603.
    Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010)CrossRefGoogle Scholar
  604. 604.
    Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.X., Fu, Q., Ma, X., Xue, Q., Sun, G., Bao, X.: Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188 (2011)CrossRefGoogle Scholar
  605. 605.
    Brumfiel, G.: Nanotubes cut to ribbons new techniques open up carbon tubes to create ribbons. Nature (2009)Google Scholar
  606. 606.
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 458(7240), 872–876 (2009)CrossRefGoogle Scholar
  607. 607.
    Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)CrossRefGoogle Scholar
  608. 608.
    Chakrabarti, A., Lu, J., Skrabutenas, J.C., Xu, T., Xiao, Z., Maguire, J.A., Hosmane, N.S.: Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)CrossRefGoogle Scholar
  609. 609.
    Kurzweil: Carbon nanotubes as reinforcing bars to strengthen graphene and increase conductivity. http://www.kurzweilai.net/carbon-nanotubes-as-reinforcing-bars-to-strengthen-graphene-and-increase-conductivity. Accessed June 2016
  610. 610.
    Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)CrossRefGoogle Scholar
  611. 611.
    Treossi, E., Melucci, M., Liscio, A., Gazzano, M., Samori, P., Palermo, V.: High-contrast visualization of graphene oxide on dye-senstized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576 (2009)CrossRefGoogle Scholar
  612. 612.
    Park, J.S., Reina, A., Saito, R., Kong, J., Dresselhaus, G., Dresselhaus, M.S.: G’ band Raman spectra of single, double and triple layer graphene. Carbon. 47, 1303 (2009)CrossRefGoogle Scholar
  613. 613.
    Kim, J., Cote, L.J., Kim, F., Huang, J.: Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260 (2009)CrossRefGoogle Scholar
  614. 614.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphnen layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  615. 615.
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Nature. 458, 872 (2009)CrossRefGoogle Scholar
  616. 616.
    Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V., Tour, J.M.: ACS Nano. 4, 1949 (2010)CrossRefGoogle Scholar
  617. 617.
    Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Ning Lau, C., de Heer, W.A., Conrad, E.H., Haddon, R.C.: Nano Lett. 10, 4061 (2010)CrossRefGoogle Scholar
  618. 618.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: J. Mater. Chem. 19, 7098 (2009)CrossRefGoogle Scholar
  619. 619.
    Vadukumpully, S., Gupta, J., Zhang, Y., Xu, C.Q., Valiyaveettil, S.: Nanoscale. 3, 303 (2011)CrossRefGoogle Scholar
  620. 620.
    He, H., Gao, C.: Chem. Mater. 22, 5054 (2010)CrossRefGoogle Scholar
  621. 621.
    Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46, 7340 (2010)CrossRefGoogle Scholar
  622. 622.
    Liu, Y., Zhou, J., Zhang, X., Liu, Z., Wan, X., Tian, J., Wang, T., Chen, Y.: Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon. 47, 3113 (2009)CrossRefGoogle Scholar
  623. 623.
    Yu, D., Yang, Y., Durstock, M., Baek, J.B., Dai, L.: Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano. 4, 5633 (2010)CrossRefGoogle Scholar
  624. 624.
    Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y., Wei, J.: Adv. Funct. Mater. 19, 894 (2009)CrossRefGoogle Scholar
  625. 625.
    Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275 (2009)CrossRefGoogle Scholar
  626. 626.
    Karousis, N., Sandanayaka, A.S.D., Hasobe, T., Economopoulos, S.P., Sarantopoulou, E., Tagmatarchis, N.: J. Mater. Chem. 21, 109 (2011)CrossRefGoogle Scholar
  627. 627.
    Liu, Z.B., Xu, Y.F., Zhang, X.Y., Zhang, X.L., Chen, X.L., Tian, J.G.: J. Phys. Chem. B. 113, 9681 (2009)CrossRefGoogle Scholar
  628. 628.
    Zhang, X., Feng, Y., Huang, D., Li, Y., Feng, W.: Carbon. 48, 3236 (2010)CrossRefGoogle Scholar
  629. 629.
    Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud’Homme, R.K., Brinson, L.C.: Nat. Nanotechnol. 3, 327 (2008)CrossRefGoogle Scholar
  630. 630.
    Das, B., Eswar Prasad, K., Ramamurty, U., Rao, C.N.R.: Nanotechnol. 20 (125705) (2009)Google Scholar
  631. 631.
    Liu, Z., Robinson, J.T., Sun, X., Dai, H.: J. Am. Chem. Soc. 130, 10876 (2008)CrossRefGoogle Scholar
  632. 632.
    Salavagione, H.J., Gomez, M.A., Martınez, G.: Macromol. 42, 6331 (2009)CrossRefGoogle Scholar
  633. 633.
    Cheng, H.C., Shiue, R.J., Tsai, C.C., Wang, W.H., Chen, Y.T.: ACS Nano. 5, 2051 (2011)CrossRefGoogle Scholar
  634. 634.
    Liang, Y.Y., Wu, D.Q., Feng, X. L., Müllen, K.: Adv. Mater. 21, 1679 (2009)Google Scholar
  635. 635.
    Zhang, X.Y., Li, H.P., Cui, X.L., Lin, Y.: J. Mater. Chem. 20, 2801 (2010)CrossRefGoogle Scholar
  636. 636.
    Noble 3D Printers: Graphenite™ WX™ For Lost Wax Casting. https://www.noble3dprinters.com/product/graphenite-wx-lost-wax-casting/. Accessed June 2016
  637. 637.
  638. 638.
    Huntsman: Huntsman advanced materials and Haydale devlop graphnen enhanced Araldite® resin. http://www.huntsman.com/advanced_materials/Applications/itemrenderer?p_rendertitle=no&p_renderdate=no&p_renderteaser=no&p_item_id=997718783&p_item_caid=1223. Accessed June 2016
  639. 639.
    Composites World: Haydale, Huntsman to work together on graphene enhanced polymer resins. http://www.compositesworld.com/news/haydale-huntsman-to-work-together-on-graphene-enhanced-polymer-resins. Accessed June 2016
  640. 640.
    Thomas Swan: Elicarb® Graphene. http://www.thomas-swan.co.uk/advanced-materials/elicarb%C2%AE-graphene. Accessed June 2016
  641. 641.
    Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., Cheng, M.C.-C.: Carbon dioxide gas sensor using a graphene sheet. Sen. Actuators B. 157, 310–313 (2011)CrossRefGoogle Scholar
  642. 642.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  643. 643.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  644. 644.
    Novoselov, K., Geim, A.: Mater. Technol. 22, 178–179 (2007)Google Scholar
  645. 645.
    Sun, J., Muruganathan, M., Mizuta, H.: Room temperature detection of individual molecular physisoprtion using suspended bilayer graphene. Sci. Adv. 2(4), e1501518 (2016)CrossRefGoogle Scholar
  646. 646.
    Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H.: ACS Nano. 3, 301 (2009)CrossRefGoogle Scholar
  647. 647.
    Ganhua, L., Ocola, L.E., Chen, J.: Reduced graphene oxide for room-temperature gas sensors. Nanotechnol. 20, 445502 (2009)CrossRefGoogle Scholar
  648. 648.
    Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E.: Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137 (2008)CrossRefGoogle Scholar
  649. 649.
    Jung, I., Dikin, D., Park, S., Cai, W., Mielke, S.L., Ruoff, R.S.: Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J. Phys. Chem. C. 112, 20264 (2008)CrossRefGoogle Scholar
  650. 650.
    Shafiei, M., Spizzirri, P.G., Arsat, R., Yu, J., du Plessis, J., Dubin, S., et al.: Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C. 114, 13796 (2010)CrossRefGoogle Scholar
  651. 651.
    Arsat, R., Breedon, M., Shafiei, M., Spizziri, P.G., Gilje, S., Kaner, R.B., et al.: Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett. 467, 344 (2009)CrossRefGoogle Scholar
  652. 652.
    Joshi, R.K., Gomez, H., Alvi, F., Kumar, A.: Graphene films and ribbons for sensing of O2 and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C. 114, 6610 (2010)CrossRefGoogle Scholar
  653. 653.
    Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H.: Practical chemical sensors from chemically derived graphene. ACS Nano. 3(2), 301–306 (2009)CrossRefGoogle Scholar
  654. 654.
    Nallon, E.C., Schnee, V.P., Bright, C., Polcha, M.P., Qilang, L.: Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 1(1), 26–31 (2016)CrossRefGoogle Scholar
  655. 655.
    Rangel, N.L., Seminario, J.M.: Vibronics and plasmonics based graphene sensors. J. Chem. Phys. 132, 125102 (2010)CrossRefGoogle Scholar
  656. 656.
    Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 22(10), 1027–1036 (2010)CrossRefGoogle Scholar
  657. 657.
    Liu, Y., Dong, X., Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012)CrossRefGoogle Scholar
  658. 658.
    McCreery, R.L.: Chem. Rev. 108, 2646 (2008)CrossRefGoogle Scholar
  659. 659.
    Niwa, O.L, Jia, J., Sato, Y., Kato, D., Kurita, R., Maruyama, K., Suzuki, K., Hirono, S.: J. Am. Chem. Soc. 128, 7144 (2006)Google Scholar
  660. 660.
    Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)CrossRefGoogle Scholar
  661. 661.
    Shan, C.S., Yang, H.F., Song, J.F., Han, D.X., IVaska, A., Niu, L.: Anal. Chem. 81, 2378 (2009)CrossRefGoogle Scholar
  662. 662.
    Kang, X.H., Wang, J., Wu, H., Aksay, A.I., Liu, J., Lin, Y.H.: Biosens. Bioelectron. 25, 901 (2009)CrossRefGoogle Scholar
  663. 663.
    Tehrani, Z.: Generic epitaxial graphene biosensors for ultrasnensitive detection of cancer risk biomarker. 2D Mater. 1, 025004 (2014)CrossRefGoogle Scholar
  664. 664.
    Park, D.-W., Schendel, A.A., Mikael, S., Brodnick, S.K., Roichner, T.J., Ness, J.P., Hayat, M.R., Atry, F., Frye, S.T., Pashaie, R., Thongpang, S., Ma, Z., Williams, J.C.: Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014)CrossRefGoogle Scholar
  665. 665.
    He, Q.Y., Sudibya, H.G., Yin, Z.Y., Wu, S.X., Li, H., Boey, F., et al.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano. 4, 3201 (2010)CrossRefGoogle Scholar
  666. 666.
    Mao, S., Lu, G., Yu, K., Bo, Z., Chen, J.: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22, 3521 (2010)CrossRefGoogle Scholar
  667. 667.
    Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnol. 11, 566–572 (2016)CrossRefGoogle Scholar
  668. 668.
    Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: ACS Nano. 4, 1790 (2010)CrossRefGoogle Scholar
  669. 669.
    Zhang, B., Cui, T.: An ultrasenstivie and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl. Phys. Lett. 98, 073116 (2011)CrossRefGoogle Scholar
  670. 670.
    Mohanty, N., Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4468–4476 (2008)CrossRefGoogle Scholar
  671. 671.
    Keeley, G.P., et al.: Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 20(36), 7864–7869Google Scholar
  672. 672.
    Kang, X., et al.: A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 81(3), 754–759Google Scholar
  673. 673.
    Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)CrossRefGoogle Scholar
  674. 674.
    Tang, L.H., Wang, Y., Li, Y.M., Feng, H.B., Lu, J., Li, J.H.: Adv. Funct. Mater. 19, 2782 (2009)Google Scholar
  675. 675.
    Wang, Y., Li, Y.M., Tang, L.H., Lu, J., Li, J.H.: Electrochem. Commun. 11, 889 (2009)CrossRefGoogle Scholar
  676. 676.
    Alwarappan, S., Erdem, A., Liu, C., Li, C.Z.: J. Phys. Chem. C. 113, 8853 (2009)CrossRefGoogle Scholar
  677. 677.
    Shang, N.G., Papalonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., Marchetto, H.: Adv. Funct. Mater. 18, 3506 (2008)Google Scholar
  678. 678.
    Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)CrossRefGoogle Scholar
  679. 679.
    Li, J., Guo, S.J., Zhai, Y.M., Wang, E.K.: Anal. Chim. Acta. 649, 196 (2009)CrossRefGoogle Scholar
  680. 680.
    Li, J., Guo, S.J., Zhai, Y.M., Wang, E.K.: Electrochem. Commun. 11, 1085 (2009)CrossRefGoogle Scholar
  681. 681.
    Kawano, Y.: Wide-band frequency-tunable terhertz and infrared detection with graphene. Nanotechnol. 24(21), 214004 (2013)CrossRefGoogle Scholar
  682. 682.
    Petruk, O., Szewczyk, R., Ciuk, T., Strupiński, W., Salach, J., Nowvicki, M., Pasternak, I., Winiarski, W., Tszcinka, K.: Sensitivity and offset voltage testing in the hall-effect sensors made of graphene. Adv. Intell. Syst. Comput. 267, 631–640 (2014)Google Scholar
  683. 683.
    Dauber, J., Sagade, A.A., Oellers, M., Watanabe, K., Taniguchi, T., Neumaier, D., Stampfer, C.: Ultra-senstive Hall sensors based on graphnen encapsulated in hexagonal boron nitride. Appl. Phys. Lett. 106, 193501 (2015)CrossRefGoogle Scholar
  684. 684.
    Li, X., Zhu, M., Du, M., Lv, Z., Zhang, L., Li, Y., Yang, Y., Yang, T., Li, X., Wang, K., Zhu, H., Fang, Y.: High detectivity graphene-silicon heterojunction photodetector. Small. 2(5), 595–601 (2015)Google Scholar
  685. 685.
    Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., Khondaker, S.I.: Position dependent photodetector from large area reduced graphenen oxide thin films. Appl. Phys. Lett. 96, 163109 (2010)CrossRefGoogle Scholar
  686. 686.
    R & D Magazine: Bosch announces breakthrough in graphene sensor technology. http://www.rdmag.com/news/2015/06/bosch-announces-breakthrough-graphene-sensor-technology. Accessed June 2016
  687. 687.
    Kazakova, O., et al.: Optimization of 2 DEG InAs/GaSb hall sensors for single particle detection. IEEE Trans. Magn. 44(11), 4480–4483 (2008)CrossRefGoogle Scholar
  688. 688.
    Pisana, S., et al.: Graphene magnetic field sensors. IEEE Trans. Mag. 46(6), 1910–1913 (2010)CrossRefGoogle Scholar
  689. 689.
    Boone, T.D., et al.: Temperature dependence of magnetotransport in extraordinary magnetoresistance devices. IEEE Trans. Magn. 42(10), 3270–3272 (2006)CrossRefGoogle Scholar
  690. 690.
    Kuzmenko, A.B., et al.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 4 (2008)CrossRefGoogle Scholar
  691. 691.
    Booth, T.J., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8(8), 2442–2446 (2008)CrossRefGoogle Scholar
  692. 692.
    Boland, C.S., Khan, U., Backes, C., O’Neill, A., McCauley, J., Duane, S., Shanker, R., Liu, Y., Jurewicz, I., Dalton, A.B., Coleman, J.N.: Sensitive, high-Strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano. 8(9), 8819–8830 (2014)CrossRefGoogle Scholar
  693. 693.
    Yao, F., Güneş, F., Ta, H.Q., Lee, S.M., Chae, S.J., Sheem, K.Y., Cojocaru, C.S., Xie, S.S., Lee, Y.H.: Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012)CrossRefGoogle Scholar
  694. 694.
    IEEE Spectrum: Faster and cheaper for graphene in Li-ion batteries. http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/faster-and-cheaper-process-for-graphene-in-liion-batteries. Accessed June 2016
  695. 695.
    Brownson, D.A.C., Kampouris, D.K., Banks, C.E.: An overview of graphnen in energy production and storage applications. J. Power Sources. 196, 4873–4885 (2011)CrossRefGoogle Scholar
  696. 696.
    Paek, S.-M., Yoo, E., Honma, I.: Nano Lett. 9, 72 (2009)CrossRefGoogle Scholar
  697. 697.
    Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Electrochim. Acta. 55, 3909 (2010)CrossRefGoogle Scholar
  698. 698.
    Guo, P., Song, H., Chen, X.: Electrochem. Commun. 11, 1320 (2009)CrossRefGoogle Scholar
  699. 699.
    Yang, S., Feng, X., Ivanovici, S., Müllen, K.: Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materiels for lithium storage. Angew Chem. Int. Ed. 49, 8408 (2010)CrossRefGoogle Scholar
  700. 700.
    Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J.T., Liang, Y., et al.: Mn3O4 graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978 (2010)CrossRefGoogle Scholar
  701. 701.
    Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., et al.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano. 4, 3187 (2010)CrossRefGoogle Scholar
  702. 702.
    Larcher, D., Beattie, S., Morcrette, M., Edstrom, K., Jumas, J.-C., Tarascon, J.-M.: Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759 (2007)CrossRefGoogle Scholar
  703. 703.
    Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., et al.: Graphen-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306 (2010)CrossRefGoogle Scholar
  704. 704.
    Lee, J.K., Smith, K.B., Hayner, C.M., Kung, H.H.: Silicon nanoparticles-graphene paper composites for Li ion batter anodes. Chem. Commun. 46, 2025 (2010)CrossRefGoogle Scholar
  705. 705.
    Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)CrossRefGoogle Scholar
  706. 706.
    Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., Jiao, Z.: Chem. Mater. 21, 3136 (2009)CrossRefGoogle Scholar
  707. 707.
    Wu, Z.S., Ren, W., Xu, L., Li, F., Cheng, H.M.: ACS Nano. 5, 5463 (2011)CrossRefGoogle Scholar
  708. 708.
    Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: ACS Nano. 4, 6337 (2010)CrossRefGoogle Scholar
  709. 709.
    Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010)CrossRefGoogle Scholar
  710. 710.
    David, L., Bhandavat, R., Barrera, U., Singh, G.: Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nature Comm. 7, (2016)Google Scholar
  711. 711.
    Liu, C., Alwarappan, S., Chen, Z., Kong, X., Li, C.-Z.: Biosens. Bioelectron. 25, 1829 (2010)CrossRefGoogle Scholar
  712. 712.
    Jafri, R.I., Rajalakshmi, N., Ramaprabhu, S.: J. Mater. Chem. 20, 7114 (2010)CrossRefGoogle Scholar
  713. 713.
    Seger, B., Kamat, P.V.: Electrocatyltically active graphene-platiunum nanocomposites. Role of 2-D carbon support for PEM fuel cells. J. Phys. Chem. C. 113, 7990 (2009)CrossRefGoogle Scholar
  714. 714.
    Kou, R., Shao, Y., Wang, D., Engelhard, M.H., Kwak, J.H., Wang, J., et al.: Enhanced activity and stability of Pt catalysts on functionalized graphnen sheets for electrocatalytic oxygen reduction. Electrochem Commun. 11, 954 (2009)CrossRefGoogle Scholar
  715. 715.
    Yumura, T., Kimura, K., Kobayashi, H., Tanaka, R., Okumura, N., Yamabe, T.: The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalyists: a theoretical proposal. Phys. Chem. Chem. Phys. 11, 8275 (2009)CrossRefGoogle Scholar
  716. 716.
    Hu, S., Lozado-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvaolv, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., Geim, A.K.: Proton transport through one-atom-thick crystals. Nature. 516, 227–230 (2014)CrossRefGoogle Scholar
  717. 717.
    Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.: J. Mater. Chem. 20, 7491 (2010)CrossRefGoogle Scholar
  718. 718.
    Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T., Lin, J.: J. Mater. Chem. 21, 8038 (2011)CrossRefGoogle Scholar
  719. 719.
    Sheng, Z.H., Shao, L., Chen, J.J., Bao, W.J., Wang, F.B., Xia, X.H.: ACS Nano 5, 4350 (2011); Huang, Y., Liang, J., Chen, Y.: An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)Google Scholar
  720. 720.
    Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., Govindaraj, A., Rao, C.N.R.: J. Chem. Sci. 120, 9 (2008)CrossRefGoogle Scholar
  721. 721.
    Kim, T.Y., Lee, H.W., Stoller, M., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Suh, K.S.: ACS Nano. 5, 436 (2011)CrossRefGoogle Scholar
  722. 722.
    Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Nano Lett. 10, 4863 (2010)CrossRefGoogle Scholar
  723. 723.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-Based Ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRefGoogle Scholar
  724. 724.
    Wu, Z.-S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F., et al.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595 (2010)CrossRefGoogle Scholar
  725. 725.
    Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., et al.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. 4, 1227 (2010)CrossRefGoogle Scholar
  726. 726.
    Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., et al.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C. 113, 13103 (2009)CrossRefGoogle Scholar
  727. 727.
    Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and th4eir polyaniline nanocomposites for energy storage. Chem. Mater. 21, 5004 (2009)CrossRefGoogle Scholar
  728. 728.
    Chen, S., Zhu, J.W., Wu, X.D., Han, Q.F., Wang, X.: Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano. 4, 2822 (2010)CrossRefGoogle Scholar
  729. 729.
    Yu, D., Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467 (2009)CrossRefGoogle Scholar
  730. 730.
    Wu, Z.S., Ren, W.C., Wang, D.W., Li, F., Liu, B.L., Cheng, H.M.: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano. 4, 5835 (2010)CrossRefGoogle Scholar
  731. 731.
    Zhu, Y.W., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapcitors. Carbon. 48, 2118 (2010)CrossRefGoogle Scholar
  732. 732.
    Du, X., Guo, O., Song, H., Chen, X.: Electrochim. Acta. 55, 4812 (2010)CrossRefGoogle Scholar
  733. 733.
    Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., Wei, F.: Carbon. 48, 487 (2010)CrossRefGoogle Scholar
  734. 734.
    Chen, Y., Zhang, X., Yu, P., Ma, Y.: J. Power Sources. 195, 3031 (2010)CrossRefGoogle Scholar
  735. 735.
    Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y., Sun, Z.: Electrochim. Acta. 55, 4170 (2010)CrossRefGoogle Scholar
  736. 736.
    Chen, S., Zhu, J., Wang, X.: J. Phys. Chem. C. 114, 11829 (2010)CrossRefGoogle Scholar
  737. 737.
    R & D Magazine: Laser-induced graphene “super” for electronics. http://www.rdmag.com/news/2015/01/laser-induced-graphene-super-electronics. Accessed June 2016
  738. 738.
    R & D Magazine: Quick-charging hybrid supercapacitors. http://www.rdmag.com/news/2015/04/quick-charging-hybrid-supercapacitors. Accessed June 2016
  739. 739.
    Peng, Z., Ye, R., Mann, J.A., Zakhidov, D., Li, Y., Smalley, P.R., Lin, J., Tour, J.M.: Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano. 9(6), 5868–5875 (2015)CrossRefGoogle Scholar
  740. 740.
    Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., et al.: Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon. 48, 487 (2010)CrossRefGoogle Scholar
  741. 741.
    Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: ACS Appl. Mater. Inter. 2, 821 (2010)CrossRefGoogle Scholar
  742. 742.
    Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: Electrochem. Commun. 11, 1158 (2009)CrossRefGoogle Scholar
  743. 743.
    Zhang, K., Zhang, L.L., Zhao, X.S., Wu, J.: Chem. Mater. 22, 1392 (2010)CrossRefGoogle Scholar
  744. 744.
    Zhang, L.L., Zhao, S., Tian, X.N., Zhao, X.S.: Langmuir. 26, 17624 (2010)CrossRefGoogle Scholar
  745. 745.
    Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Chem. Commun. 47, 5753 (2011)CrossRefGoogle Scholar
  746. 746.
    Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X.: ACS Nano. 4, 2822 (2010)CrossRefGoogle Scholar
  747. 747.
    Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  748. 748.
    Wang, Y., Chen, X., Zhong, Y., Zhu, F., Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95, 063302 (2009)CrossRefGoogle Scholar
  749. 749.
    Li, X., Zhu, H., Wang, K., Anyuan, C., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22(25), 2743–2748 (2010)CrossRefGoogle Scholar
  750. 750.
    Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisqurt, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014)CrossRefGoogle Scholar
  751. 751.
    De Arco, L.W., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous highly glexible, and transparent graphene gilms by vhemical vapor deposition for organic photovoltaics. ACS Nano. 4(5), 2865 (2010)CrossRefGoogle Scholar
  752. 752.
    Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P.: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 4(1), 43–48 (2010)CrossRefGoogle Scholar
  753. 753.
    Lin, Y., Norman, C., Srivastava, D., Azough, F., Wang, L., Robbins, M., Simpson, K., Freer, R., Kinloch, I.A.: Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces. 7(29), 15898–15908 (2015)CrossRefGoogle Scholar
  754. 754.
    Geng, X., Niu, L., Xing, Z., Song, R., Liu, G., Sun, M., et al.: Aqueous-processable noncovalent chemically converted graphene – quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638 (2010)CrossRefGoogle Scholar
  755. 755.
    Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., et al.: Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano. 4, 3033 (2010)CrossRefGoogle Scholar
  756. 756.
    Xiang, Q., Yu, J., Jaroniec, M.: J. Am. Chem. Soc. 134, 6575 (2012)CrossRefGoogle Scholar
  757. 757.
    Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano. 4(10), 6203–6211 (2010)CrossRefGoogle Scholar
  758. 758.
    Inhabitat: Graphene-based solar cells could yield 60% efficiency. http://inhabitat.com/graphene-based-solar-cells-could-yield-60-efficiency/. Accessed June 2016
  759. 759.
    Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano. 8(3), 2864–2872 (2014)CrossRefGoogle Scholar
  760. 760.
    Burress, J., Gadipelli, S., Ford, J., Simmons, J., Zhou, W., Yildirim, T.: Angew. Chem. Int. Ed. 49, 8902 (2010)CrossRefGoogle Scholar
  761. 761.
    Ao, Z.M., Jiang, Q., Zhang, R.Q., Tan, T.T., Li, S.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)CrossRefGoogle Scholar
  762. 762.
    Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., et al.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 47, 922 (2009)CrossRefGoogle Scholar
  763. 763.
    Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.-K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  764. 764.
    Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., Chen, Y.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 47, 922–925 (2009)CrossRefGoogle Scholar
  765. 765.
    Wu, B., Tuncer, H.M., Naeem, M., Yang, B., Cole, M.T., Milne, W.I., Hao, Y.: Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fraction bandwidth at 140 GHz. Sci. Rep. 4, 4130 (2014)CrossRefGoogle Scholar
  766. 766.
    Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRefGoogle Scholar
  767. 767.
    Yang, J.W., Lee, G., Kim, J.S., Kim, K.S.: J. Phys. Chem. Lett. 2, 2577 (2011)CrossRefGoogle Scholar
  768. 768.
    Jin, Z., Yao, J., Kittrell, C., Tour, J.M.: ACS Nano. 5, 4112 (2011)CrossRefGoogle Scholar
  769. 769.
    Park, J., Lee, W.H., Huh, S., Sim, S.H., Kim, S.B., Cho, K., Hong, B.H., Kim, K.S.: J. Phys. Chem. Lett. 2, 841 (2011)CrossRefGoogle Scholar
  770. 770.
    Park, J., Jo, S.B., Yu, Y.J., Kim, Y., Yang, J.W., Lee, W.H., Kim, H.H., Hong, B.H., Kim, P., Cho, K., Kim, K.S.: Adv. Mater. 24, 407 (2012)CrossRefGoogle Scholar
  771. 771.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)CrossRefGoogle Scholar
  772. 772.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Phys. Rev. Lett. 100, 016602 (2008)Google Scholar
  773. 773.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Solid State Commun. 146, 351 (2008)CrossRefGoogle Scholar
  774. 774.
    Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today. 60, 35 (2007)Google Scholar
  775. 775.
    Chen, J.-H., Ishigami, M., Jang, C., Hines, D.R., Fuhrer, M.S., Williams, E.D.: Printed graphene circuits. Adv. Mater. 19(21), 3623–3627 (2007)CrossRefGoogle Scholar
  776. 776.
    Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K.: Chaotic Dirac billiard in graphene quantom dots. Science. 320(5874), 356–358 (2008)CrossRefGoogle Scholar
  777. 777.
    Jia, C., Migliore, A., Xin, N., Huang, S., Wang, J., Yang, Q., Wang, S., Chen, H., Wang, D., Feng, B., Liu, Z., Zhang, G., Qu, D.-H., Tian, H., Ratner, M.A., Xu, H.Q., Nitzan, A., Guo, X.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science. 352(6292), 1443–1445 (2016)CrossRefGoogle Scholar
  778. 778.
    Halford, B.: Diarylethene molecular switch has staying power. Chem. Eng. News. 94(25), 5 (2016)Google Scholar
  779. 779.
    Georgia Tech Research News: Carbon-based electronics: researchers develop foundation for circuitry and devices based on graphite. http://gtresearchnews.gatech.edu/newsrelease/graphene.htm. Accessed June 2016
  780. 780.
    Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Device Lett. 28(4), 1–12 (2007)CrossRefGoogle Scholar
  781. 781.
    Kedzierski, J., Hsu, P.-L., Healey, P., Wyatt, P., Keast, C., Sprinkle, M., Berger, C., de Heer, W.: Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Devices. 55, 2078 (2008)CrossRefGoogle Scholar
  782. 782.
    Moon, J.S., Curis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., Vanmil, B., Myers-Ward, R., Eddy, C., Gaskill, D.K.: Epitaxial-graphene RF field-effect transistors on Si-Face 6H-SiC substrates. IEEE Electron Device Lett. 30(6), 650–652 (2009)CrossRefGoogle Scholar
  783. 783.
    Sordan, R., Traversi, F., Russo, V.: Logic gates with a single graphene transistor. Appl. Phys. Lett. 94, 073305 (2009)CrossRefGoogle Scholar
  784. 784.
    Chang, H., Sun, Z., Yuan, Q., Ding, F., Tao, X., Yan, F., et al.: Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater. 22, 4872 (2010)CrossRefGoogle Scholar
  785. 785.
    Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009)CrossRefGoogle Scholar
  786. 786.
    (a) Lee, W.H., Park, J., Sim, S.H., Lim, S., Kim, K.S., Hong, B.H., Cho, K.: J. Am. Chem. Soc. 133, 4447 (2011); (b) Lee, W.H., Park, J., Sim, S.H., Jo, S.B., Kim, K.S., Hong, B.H., Cho, K.: Adv. Mater. 3, 1752 (2011)Google Scholar
  787. 787.
    Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T., Hshieh, G.W., Jung, S.J., Bonaccorso, F., Paul, P.J., Chu, D.P., Ferrari, A.C.: Ink-jet printed graphene electronics. ACS Nano. 6, 2992 (2012)CrossRefGoogle Scholar
  788. 788.
    MIT Technology Review: Printed graphene transistors promise a flexible electronic future. https://www.technologyreview.com/s/518606/printed-graphene-transistors-promise-a-flexible-electronic-future/. Accessed June 2016
  789. 789.
    Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRefGoogle Scholar
  790. 790.
    The physics arXiv blog: Graphene transistors clocked at 26 GHz. http://arxivblog.com/?p=755. Accessed June 2016
  791. 791.
    Traversi, F., Russo, V., Sordan, R.: Integrated complementary graphene inverter. Appl. Phys. Lett. 94, 223312 (2009)CrossRefGoogle Scholar
  792. 792.
    Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science. 327(u), 662 (2010)CrossRefGoogle Scholar
  793. 793.
    Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K.A.: Wafer-Scale Graphene Integrated Circuit. Science. 332(6035), 1294–1297 (2011)CrossRefGoogle Scholar
  794. 794.
    Physics World: Graphene circuit breaks the gigahertz barrier. http://physicsworld.com/cws/article/news/2013/jun/17/graphene-circuit-breaks-the-gigahertz-barrier. Accessed June 2016
  795. 795.
    Skrypnychuk, V., Boulanger, N., Yu, V., Hilke, M., Mannsfeld, S.C.B., Toney, M.F., Barbero, D.R.: Enhanced verticle charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mat. 25(5), 664–670 (2014)CrossRefGoogle Scholar
  796. 796.
    Ming, L., Xin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature. 474, 64–67 (2011)CrossRefGoogle Scholar
  797. 797.
    Phys.org: Graphene could lead to faster chips. phys.org/news/2009-03-graphene-faster-chips.html. Accessed June 2016Google Scholar
  798. 798.
    Zhou, Q., Zheng, J., Onishi, S., Crommie, M.F., Zettl, A.K.: Graphene electrostatic microphone and ultrasonic radio. PNAS. 112(29), 1–5 (2015)CrossRefGoogle Scholar
  799. 799.
    Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.: Condens. Matter. 20, 1–13 (2008)Google Scholar
  800. 800.
    Wang, X., Zhi, L.J., Mullen, K.: Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  801. 801.
    Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitzed solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  802. 802.
    Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P.: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 4(1), 43–48 (2010)CrossRefGoogle Scholar
  803. 803.
    New Atlas: First flexible graphene-based display created. http://www.gizmag.com/graphene-flexible-electrophoretic-display/33765/. Accesed June 2016
  804. 804.
    Optics.org: Flexible, inorganic LEDs and solar cells grown on graphene. http://optics.org/news/5/9/45. Accessed June 2016
  805. 805.
    Anguita, J.V., Ahmad, M., Haq, S., Allam, J., Silva, S.R.P.: Ultra-broadband light trapping nusing nanotextured decoupled graphene multilayers. Sci. Adv. 2(2), e1501238 (2016)CrossRefGoogle Scholar
  806. 806.
    Fabro, A., et al.: Graphene-based interfaces do not alter target nerve cells. ACS Nano. 10(1), 615–623 (2016)CrossRefGoogle Scholar
  807. 807.
    Lalwani, G., Henslee, A.M., Farshid, B., Lin, L., Kasper, F.K., Qin, Y.-X., Mikos, A.G., Sitharaman, B.: Two-dimensional nanostructure- reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules. 14(3), 900–909 (2013)CrossRefGoogle Scholar
  808. 808.
    Kanakia, S., Toussaint, J.D., Choudhury, S.M., Lalwani, G., Tembulkar, T., Button, T., Shroyer, K.R., Moore, W., Sitharaman, B.: Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent. Int. J. Nanomed. 8, 2821–2833 (2013)Google Scholar
  809. 809.
    Lalwani, G., Sundaraj, J.L., Schaefer, K., Button, T., Sitharaman, B.: Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging – X-ray computed tomography contrast agent. J. Mater. Chem. B Mater Biol. Med. 2(22), 3519–3530 (2014)CrossRefGoogle Scholar
  810. 810.
    Abdul, K.R., Kafafy, R., Salleh, H.M., Faris, W.F.: Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnol. 23(45), 455106 (2012)CrossRefGoogle Scholar
  811. 811.
    Min, S.K., Kim, W.Y., Cho, Y., Kim, K.S.: Nat. Nanotechnol. 6, 162 (2011)CrossRefGoogle Scholar
  812. 812.
    Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H., Yang, B.: Chem. Commun. 47, 6858 (2011)CrossRefGoogle Scholar
  813. 813.
    Hu, S.H., Chen, Y.W., Hung, W.T., Chen, I.W., Chen, S.Y.: Adv. Mater. 24, 1748 (2012)CrossRefGoogle Scholar
  814. 814.
    Mao, X., Tian, D., Li, H.: Chem. Commun. 48, 4851 (2012)CrossRefGoogle Scholar
  815. 815.
    Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng. 52, 319–331 (2013)CrossRefGoogle Scholar
  816. 816.
    Yan, Z., et al.: Rebar Graphene. ACS Nano. 8(5), 5061–5068 (2014)CrossRefGoogle Scholar
  817. 817.
    Kim, T., Park, J., Sohn, J., Cho, D., Jeon, S.: Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano. 10(4), 4770–4778 (2016)CrossRefGoogle Scholar
  818. 818.
    Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12(7), 3602–3608 (2012)CrossRefGoogle Scholar
  819. 819.
    Romanchuk, A.Y., Slesarev, A.S., Kalmykov, S.N., Kosynkint, D.V., Tour, J.M.: Graphene oxide for effective radionuclide removal. Phy. Chem. Chem. Phy. 15, 2321–2327 (2013)CrossRefGoogle Scholar
  820. 820.
    Rice University News & Media: Another tiny miracle: graphene oxide soaks up radioactive waste. http://news.rice.edu/2013/01/08/another-tiny-miracle-graphene-oxide-soaks-up-radioactive-waste/. Accessed June 2016
  821. 821.
    Xu, J., Wang, L., Zhu, Y.: Langmuir. 28, 8418 (2012)CrossRefGoogle Scholar
  822. 822.
    Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science. 313, 951 (2006)CrossRefGoogle Scholar
  823. 823.
    Zhao, G., Li, J., Ren, X., Chen, C., Wang, X.: Environ. Sci. Technol. 45, 10454 (2011)CrossRefGoogle Scholar
  824. 824.
    Zhao, G., Jiang, L., He, Y., Li, J., Dong, H., Wang, X., Hu, W.: Adv. Mater. 23, 3959 (2011)CrossRefGoogle Scholar
  825. 825.
    Chandra, V., Kim, K.S.: Chem. Commun. 47, 3942 (2011)CrossRefGoogle Scholar
  826. 826.
    Geng, Z., Lin, Y., Yu, X., Shen, Q., Ma, L., Li, Z., Pan, N., Wang, X.J.: Mater. Chem. 22, 3527 (2012)CrossRefGoogle Scholar
  827. 827.
    Chandra, V., Park, J., Chun, Y., Woo Lee, J., Hwang, I.C., Kim, K.S.: ACS Nano. 4, 3979 (2010)CrossRefGoogle Scholar
  828. 828.
    Zhang, J., Xiong, Z., Zhao, X.S.J.: Mater. Chem. 21, 3634 (2011)CrossRefGoogle Scholar
  829. 829.
    Chandra, V., Yu, S.U., Kim, S.H., Yoon, Y.S., Kim, D.Y., Kwon, A.H., Meyyappan, M., Kim, K.S.: Chem. Commun. 48, 735 (2012)CrossRefGoogle Scholar
  830. 830.
    Mishra, A.K., Ramaprabhu, S.J.: Mater. Chem. 22, 3708 (2012)CrossRefGoogle Scholar
  831. 831.
    Phys.org: Graphene proves a long-lasting lubricant. http://phys.org/news/2014-10-graphene-long-lasting-lubricant.html. Accessed June 2016
  832. 832.
    Wei, Y., Xie, H.: Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. 375(10), 1323–1328 (2011)CrossRefGoogle Scholar
  833. 833.
    R & D Magazine: Graphene-copper sandwich may improve, shrink electronics. http://www.rdmag.com/news/2014/03/graphene-copper-sandwich-may-improve-shrink-electronics. Accessed June 2016
  834. 834.
    Bomgardner, M.M.: Biobased firms win funding. Chem. Eng. News. 93(9), 15 (2015)CrossRefGoogle Scholar
  835. 835.
    Jia, C., Migliore, A., Xin, N., Huang, S., Wang, J., Yang, Q., Shuopei, W., et al.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science. 352(6292), 1443–1445 (2016)CrossRefGoogle Scholar
  836. 836.
    Cambridge Dictionary: Graphene. http://dictionary.cambridge.org/dictionary/english/graphene?a=british. Accessed June 2016
  837. 837.
    Wessling, B.: Synth. Met. 93, 143 (1998)CrossRefGoogle Scholar
  838. 838.
    Wallace, G.G., Spinks, G.M., Teasdale, P.R.: Conductive electroactive polymers: intelligent materials systems. Technomic (1996)Google Scholar
  839. 839.
    Malinauskas, A., Malinauskiene, J., Ramanavičius, A.: Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnol. 16, R51–R62 (2005)CrossRefGoogle Scholar
  840. 840.
    Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38(8), 2397–2409 (2009)CrossRefGoogle Scholar
  841. 841.
    Ito, T., Shirakawa, H., Ikeda, S.: J. Plym. Sci. Plym. Chem. Edu. 12, 11 (1974)CrossRefGoogle Scholar
  842. 842.
    Letheby, H.: J. Chem. Soc. 15, 161 (1862)CrossRefGoogle Scholar
  843. 843.
    Mohilner, D.M., Adams, R.N., Arlgersinger Jr., W.J.: J. Am. Chem. Soc. 84, 3618 (1962)CrossRefGoogle Scholar
  844. 844.
    Gardini, G.P.: Adv. Heterocycl. Chem. 15, 67 (1973)CrossRefGoogle Scholar
  845. 845.
    Angeli, A.: Gazz. Chim. Ital. 46, 279 (1916) (1916)Google Scholar
  846. 846.
    Lund, H.: Acta Chem. Scand. 11, 1323 (1957)CrossRefGoogle Scholar
  847. 847.
    Peover, M.E., White, B.S.: J. Electroanal. Chem. 13, 93 (1967)CrossRefGoogle Scholar
  848. 848.
    Osa, T., Yildiz, A., Kuwana, T.: J. Am. Chem. Soc. 91, 3994 (1969)CrossRefGoogle Scholar
  849. 849.
    Armour, M., Gavies, A.G., Upadhyay, J., Wasserman, A.: J. Polym. : Sci. A1, 1527 (1967)Google Scholar
  850. 850.
    Jozefowicz, M., Yu, L.T., Belorgey, G., Buvet, R.: J. Polym. Sci. Part C. 16, 2943 (1969)CrossRefGoogle Scholar
  851. 851.
    Dall'Ollio, A., Dascola, Y., Varacca, V., Bocchi, V.: Comptes Rendus. C267, 433 (1968)Google Scholar
  852. 852.
    (a) Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Phys. Rev. Lett. 39, 1089 (1977); (b) Genies, W.M., Bidan, G., Diaz, A.: J. Electroanal. Chem. 149, 101 (1983)Google Scholar
  853. 853.
    (a) Diaz, A.F., Kanazawa, K.K., Gardini, G.P.: J. Chem. Soc. Chem. Commun. 635 1979; (b) Scott, J.C., Pfluger, P., Krounbi, M.T., Street, G.B.: Phys. Rev. B 28, 2140 (1983); (c) Chen, J., Heeger, A.J.: Synth. Met. 24, 311 (1988)Google Scholar
  854. 854.
    Salzner, U.: Electronic structure of conducting organic polymers: insights from time-dependent density functional theory. WIREs Comput. Mol. Sci. 4(6), 601–622 (2014)CrossRefGoogle Scholar
  855. 855.
    Brazovskii, S., Kirova, N.: Physical theory of scitons in conducting polymers. Chem. Soc. Rev. 39, 2453–2465 (2010)CrossRefGoogle Scholar
  856. 856.
    Brédas, J.L., Street, G.B.: Acc. Chem. Res. 18, 309 (1985)CrossRefGoogle Scholar
  857. 857.
    Brédas, J.L., Scott, J.C., Yakushi, K., Street, G.B.: Phys. Rev. 30, 1023 (1984)CrossRefGoogle Scholar
  858. 858.
    Guay, J., Leclerc, M., Dao, L.H.: J. Electroanal. Chem. 251, 31 (1988)CrossRefGoogle Scholar
  859. 859.
    Kitani, A., Yano, J., Kunai, A., Sasaki, K.: J. Electroanal. Chem. 221, 69 (1987)CrossRefGoogle Scholar
  860. 860.
    Basescu, N., Liu, Z.-X., Moses, D., Heeger, A.J., Naarmann, H., Theophilou, N.: Long mean free path coherent transport in doped polyacetylene. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of conjugated polymers, vol. 76, p. 18. Springer, Berlin/Hedelberg (1987)CrossRefGoogle Scholar
  861. 861.
    Laks, B., Galvao, D.S.: Phys. Rev. B: Condens. Matter. 56, 967 (1997)CrossRefGoogle Scholar
  862. 862.
    Chance, R.R., Brédas, J.L., Silbey, R.: Phys. Rev. B. 29, 4491 (1984)CrossRefGoogle Scholar
  863. 863.
    Schimmel, T., Gläser, D., Schwoerer, M., Naarmann, H.: Properties of highly conducting polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 49. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  864. 864.
    Kuwabara, M., Abe, S., Ono, Y.: Synth. Met. 85, 1109 (1997)CrossRefGoogle Scholar
  865. 865.
    Roth, S., Kaiser, M., Reichenbach, J.: Physica Scripta. T45, 230 (1992)CrossRefGoogle Scholar
  866. 866.
    Bott, D.C.: Structural basis for semiconducting and metallic polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1191. Marcel Dekker, Inc., New York (1986)Google Scholar
  867. 867.
    Roth, S.: Conductive polymers in molecular electronics: conductivity and photoconductivity. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 129. Adam Hilger, New York (1991)Google Scholar
  868. 868.
    Kivelson, S., Heeger, A.J.: Synth. Met. 22, 371 (1988)CrossRefGoogle Scholar
  869. 869.
    Pietronero, L.: Synth. Met. 8, 225 (1983)CrossRefGoogle Scholar
  870. 870.
    Mao, H., Pickup, P.G.: J. Am. Chem. Soc. 112, 1776 (1990)CrossRefGoogle Scholar
  871. 871.
    Aldissi, M.: Transport properties-semiconductor to metal transition. In: Inherently conducting polymers: processing, fabrication, applications, limitations, p. 43. Noyes Data Corporation, New Jersey (1989)Google Scholar
  872. 872.
    Rehwald, W.; Kiessm H.G. Charge transport in polymers. In Conjugated conducting polymers, Springer Ser. Solid-State Sci.; Kiess, H. Ed.; Springer, New York, 1992; Vol. 102, p. 158.Google Scholar
  873. 873.
    Ochmanska, J., Pickup, P.G.: J. Electroanal. Chem. 297, 211 (1991)CrossRefGoogle Scholar
  874. 874.
    Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials, 3rd edn. Clarendon, Oxford (1979)Google Scholar
  875. 875.
    Schäfer-Siebert, D., Roth, S.: Limitation of the conductivity of polyacetylene by conjugational defects. Synthetic Metals. 28(3), (1989)Google Scholar
  876. 876.
    Hauser, J.J.: J. Non-Cryst. Solids 23, 21 (1977); (b) Singh, R., Narula, A.K., Tandon, R.P., Mansingh, A., Chandra, S.: J. Appl. Phys. 81, 3726 (1997); (c) Sheng, P.: Phys. Rev. B 21, 2180 (1980)Google Scholar
  877. 877.
    Paasch, G., Lehmann, G., Wuckel, H.: Properties of highly conducting polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 49. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  878. 878.
    Kivelson, S.: Phys. Rev. B. 21, 3798 (1982)CrossRefGoogle Scholar
  879. 879.
    Kivelson, S., Heeger, A.J.: Phy. Rev. Lett. 55, 308 (1985)CrossRefGoogle Scholar
  880. 880.
    Heeger, A.J.: Polyacetylene, new concepts and new phenomena. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 729. Marcel Dekker, Inc., New York (1986)Google Scholar
  881. 881.
    Yoon, C.O., Reghu, M., Moses, D., Heeger, A.J., Cao, Y., Chen, T.-A., Wu, X., Rieke, R.D.: Synth. Met. 75, 229 (1995)CrossRefGoogle Scholar
  882. 882.
    Plocharski, J.: Mechanisms of conductivity in conjugated polymers and relations to moprhology. In: Plocharski, J., Roth, S. (eds.) Material science forum, vol. 42, p. 17. Trans Tech Publications, Switzerland (1989)Google Scholar
  883. 883.
    Roth, S.: Conducting polymers- present state of physical understanding. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 1. Trans tech Publications, Switzerland (1989)Google Scholar
  884. 884.
    Pfluger, P.: Electronic structure and transport in the organic ‘amorphous semi conductor’ polypyrrole. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1369. Marcel Dekker, Inc., New York (1986)Google Scholar
  885. 885.
    Kanazawa, K.K., Diaz, A.F., Gill, W.D., Grant, P.M., Street, G.B., Gardini, G.P., Kwak, J.F.: Synth. Met. 1, 329 (1979)CrossRefGoogle Scholar
  886. 886.
    Epstein, A.J.: AC conductivity of polyacetylene: distinguishing mechanisms of charge transport. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1047. Marcel Dekker, Inc., New York (1986)Google Scholar
  887. 887.
    Sariciftci, N.S., Kobryanskii, V.M., Reghu, M., Smilowitz, L., Halvorson, C., Hagler, T.W., Mihailovic, D., Heeger, A.J.: Synth. Met. 53, 161 (1993)CrossRefGoogle Scholar
  888. 888.
    Epstein, A.J., MacDiarmid, A.G.: The controlled electromagnetic response of polyanilines and its application to technologies. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 141. Adam Hilger, New York (1991)Google Scholar
  889. 889.
    (a) Wang, Z.H., Ray, A., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B 43, 4373 (1991); (b) Courves, L.D., Porter, S.J.: Synth. Met. 28, C761 (1989)Google Scholar
  890. 890.
    Wang, Z.H., Scherr, E.M., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 45, 4190 (1992)CrossRefGoogle Scholar
  891. 891.
    Burns, A., Wang, Z.H., Du, G., Joo, J., Epstein, A.J., Osaheni, J.A., Jenekhe, S.A., Wang, C.S.: In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materiels. IN Mat. Res. Soc. Symp, vol. 247, p. 735. Materials Reasearch Society, Pittsburgh (1992)Google Scholar
  892. 892.
    Heeger, A.J.: Conducting polymers: The route from fundamental science to technology. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 1. Adam Hilger, New York (1991)Google Scholar
  893. 893.
    Epstein, A.J., Rommelmann, H., Abkowitz, M., Gibson, H.W.: Phys. Rev. Lett. 47, 1549 (1981)CrossRefGoogle Scholar
  894. 894.
    Javadi, H.H.S., Cromack, K.R., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 39, 3579 (1989)CrossRefGoogle Scholar
  895. 895.
    Lee, K., Reghu, M., Yuh, E.L., Sariciftci, N.S., Heeger, A.J.: Synth. Met. 68, 287 (1995)CrossRefGoogle Scholar
  896. 896.
    Sieger, K., Gill, W.D., Clark, T.C., Street, G.B.: Am. Phys. Soc. (1978)Google Scholar
  897. 897.
    Reghu, M., Yoon, C.O., Moses, D., Cao, Y., Heeger, A.J.: Synth. Met. 69, 329 (1995)CrossRefGoogle Scholar
  898. 898.
    (a) Basescu, N., Liu, Z.-X., Moses, D., Heeger, A.J., Naarmann, H., Theophilou, N.: Nature 327, 403 (1987); (b) Maddison, D.S., Unsworth, J.: Synth. Met. 22, 257 (1988)Google Scholar
  899. 899.
    Ferraris, J.P., Webb, A.W., Weber, D.C., Fox, W.B., Carpenter, E.R., Brant, P.: Solid State Commun. 35, 15 (1980)CrossRefGoogle Scholar
  900. 900.
    Fukuhara, T., Masubuchi, S., Kazama, S.: Synth. Met. 92, 229 (1998)CrossRefGoogle Scholar
  901. 901.
    Bao, Z.-X., Liu, C.X., Pinto, N.J.: Synth. Met. 87, 147 (1997)CrossRefGoogle Scholar
  902. 902.
    Heeger, A.J., Smith, P.: Solution processing of conducting polymers: opportunities for science and technology. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 141. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  903. 903.
    MacDiarmid, A.G., Epstein, A.J.: The polyanilines: potential technology based on new chemistry and new properties. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 117. Adam Hilger, New York (1991)Google Scholar
  904. 904.
    Burroughes, J.H., Friend, R.H.: The semiconductor device physics of polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) The novel science and technology of highly conducting and nonlinear optically active materials, p. 555. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  905. 905.
    Aldissi, M.: Doping of conjugated polymers: conducting polymers. In: Inherently conducting polymers: processing, fabrication, applications, limitations, vol. 989, p. 40. Noyes Data Corporation, New Jersey (1989)Google Scholar
  906. 906.
    (a) Paloheimo, J., Punkka, E., Stubb, H., Kuivavainen, P.: Polymer field-effect transistors for transport property studies. In: Metzger, R.M. (ed.) Proceedings of NATO ASI conference on Lower Dimensional Systems and Molecular Electronics, Soetses, Greece, June 12–23, p. 989. Plenum Press, New York (1990);(b) Punkka, E.; Isotalo, M.; Ahlskog, M.; Subb, H. Effects of humidy and heat on the conductivity of Poly(3-Alkylltheriophenes), Espoo. Finland.Google Scholar
  907. 907.
    Sato, M.-A., Tanaka, S., Kaeriyama, K.: J. Chem. Soc., Chem. Commun. 713, (1985)Google Scholar
  908. 908.
    Sato, M.-A., Tanaka, S., Kaeriyama, K.: Synth. Met. 18, 229 (1987)CrossRefGoogle Scholar
  909. 909.
    Peierls, R.E.: Quantum theory of solids, p. 108. Clarendon, Oxford (1955)Google Scholar
  910. 910.
    Dai, Y., Chodhury, S., Blaisten-Barojas, E.: Density functional theory study of the structure and energetics of negatively charged pyrrole oligomers. Quantum Chem. 111(10), 2295–2305 (2011)CrossRefGoogle Scholar
  911. 911.
    Tretiak, S., Igumenshchev, K., Chernyak, V.: Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B. 71, 033201 (2005)CrossRefGoogle Scholar
  912. 912.
    Whangbo, M.-H., Hoffmann, R., Woodward, R.B.: Proc. Royal Soc. Lond. A. 366, 23 (1979)CrossRefGoogle Scholar
  913. 913.
    Hoffmann, R.: J. Chem Phys. 39, 1397 (1963)CrossRefGoogle Scholar
  914. 914.
    Delhalle, J., Delhalle, S., André, J.M., Pireaux, J.J., Saudano, R., Verbist, J.J.: J. Electron. Spectrosc. Relat. Phenom. 12, 293 (1977)CrossRefGoogle Scholar
  915. 915.
    Elsenbaumer, R.L., Marynick, D.S., Seong, S., Meline, R.L.: Sulfur containing conjugated polymers with interesting electronic properties. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Mat. Res. Soc. Symp. Proc., Electrical, electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 221. Materials Research Society, Pittsburgh (1994)Google Scholar
  916. 916.
    Pomerantz, M., Wang, J., Seong, S., Starkey, K.P., Nugyen, L., Marynick, D.S.: A new dithiophene fused p-phenylene vinylene vonducting polymer. Synthesis and study. In: Mat. Res. Soc. Symp. Proc., Electrical optical, and magnetic properties of organic solid state materials, vol. 328, p. 227. Materials Research Society, Pittsburgh (1994)Google Scholar
  917. 917.
    Beck, F.: Metalloberflaeche. 46, 177 (1992)Google Scholar
  918. 918.
    Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.F.: J. Am. Chem. Soc. 107, 3092 (1985)Google Scholar
  919. 919.
    Ford, W.K., Duke, C.B., Paton, A.: J. Chem. Phys. 77, 4564 (1982)CrossRefGoogle Scholar
  920. 920.
    Ford, W.K., Duke, C.B., Salaneck, W.R.: J. Chem. Phys. 77, 5030 (1982)CrossRefGoogle Scholar
  921. 921.
    Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. B. 22, 2099 (1980)CrossRefGoogle Scholar
  922. 922.
    Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. Lett. 42, 1698 (1979)CrossRefGoogle Scholar
  923. 923.
    (a)Kiess, H.G.: Conjugated conducting polymers. In: Kiess, H. (ed.) Springer Ser. Sold-State Sci, vol. 102, p. 1. Springer (1992.); (b) Baeriswyl, D., Campbell, D.K., MAzumdar, S: An overview of the theory of pi-conjugated polymers. In: Conjugated conducting polymers, Springer Ser. Solid-State Sci., Vol. 102, p. 7. Springer, New York (1992)Google Scholar
  924. 924.
    Mazumdar, S., Chandross, M.: Theory of photoexcitations in phenylene-based polymers. In: Yang, S.C., Chandrasekhar, P. (eds.) Proc. SPIE, 2428: optical and photonic applications of electroactive and conducting polymers, vol. 1995, p. 62. SPIE-The International Society for Optical Engineering, Bellingham (2528)Google Scholar
  925. 925.
    Grant, P.M., Batra, I.P.: Solid State Commun. 29, 225 (1979)CrossRefGoogle Scholar
  926. 926.
    Brédas, J.L., Chance, R.R., Silbey, R.: Phys. Rev. B. 26, 5843 (1982)CrossRefGoogle Scholar
  927. 927.
    Kertesz, M., Hughbanks, T.R.: Synth. Met. 69, 699 (1995)CrossRefGoogle Scholar
  928. 928.
    Brédas, J.L.: Electronic structure of highly conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 859. Marcel Dekker, Inc., New York (1986)Google Scholar
  929. 929.
    Pollak, M., Knotek, M.L.: J. Non-Cryst. Solids. 32, 141 (1979)CrossRefGoogle Scholar
  930. 930.
    (a) Yamamoto, T., Sanechika, K., Yamamoto, A.: J. Polym. Sci. Polym. Lett. Ed. 18, 9 (1980); (b) Lin, J.W.P., Dudek, L.P.: J. Polym. Sci. Polym. Lett. Ed. 18, 2869 (1980)Google Scholar
  931. 931.
    Brédas, J.L., Heeger, A.J., Wudl, F.: J. Chem. Phys. 85, 4673 (1986)CrossRefGoogle Scholar
  932. 932.
    Tanaka, C., Tanaka, J.: Energy band structure for metallic polyacetylene. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Proc., Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 577. Materials Research Society, Pittsburgh (1992)Google Scholar
  933. 933.
    Brédas, J.L., Thémans, B., Fripiat, J.G., André, J.M., Chance, R.R.: Phys. Rev. B. 29, 6761 (1984)CrossRefGoogle Scholar
  934. 934.
    Lazzaroni, R., Rachidi, S., Brédas, J.L.: Theoretical investigation of chain flexibility in polythiophene and polypyrrole. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 13. Adam Hilger, New York (1991)Google Scholar
  935. 935.
    Mele, E.J.: Phonmons and the Peierls instability in polyacetylene. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 795. Marcel Dekker, Inc., New York (1986)Google Scholar
  936. 936.
    Stafström, S.: Electronic properties of heavily doped trans-polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 113. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  937. 937.
    Chandross, M., Shimoi, Y., Mazumdar, S.: Synth. Met. 85, 1001 (1997)CrossRefGoogle Scholar
  938. 938.
    Gallagher, F.B., Spano, F.C.: Synth. Met. 85, 1007 (1997)CrossRefGoogle Scholar
  939. 939.
    Senevirathne, M.S., Nanayakkara, A., Senadeera, G.K.R.: A theoretical investigation of band gaps of conducting polymers with heterocycles. J. Natn. Sci. Foundation Sri Lanka. 39(2), 183–185 (2011)CrossRefGoogle Scholar
  940. 940.
    Thémans, B., Salaneck, W.R., Brédas, J.L.: Synth. Met. 28, C359 (1989)CrossRefGoogle Scholar
  941. 941.
    (a) Nicholas, G., Durand, P.: J. Chem. Phys. 70, 2020 (1979); 72, 453 (1980); (b) André, J.M., Burke, L.A., Delhalle, J., Nicolas, G., Durand, P.: Int. J. Quantum Chem. Symp. 13, 283 (1979)Google Scholar
  942. 942.
    Brédas, J.L., Chance, R.R., Silbey, R., Nicolas, G., Durand, P.: J. Chem. Phys. 75, 255 (1981)CrossRefGoogle Scholar
  943. 943.
    Delamer, M., Lacaze, P.C., Dumousseau, J.Y., Dubois, J.E.: Electrochim. Acta. 27, 61 (1982)CrossRefGoogle Scholar
  944. 944.
    Tanaka, J., Tanaka, M.: Optical spectra of conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1269. Marcel Dekker, Inc., New York (1986)Google Scholar
  945. 945.
    Mazumdar, S., Chandross, M.: Theory of photoexcitations in phenylene-based polymers. In: Yang, S.C., Chandrasekhar, P. (eds.) Proc. SPIE, 2528: optical and photonic applications of electroactive and conducting polymers, p. 62. SPIE-The International Society for Optical Engineering, Bellingham (1995)Google Scholar
  946. 946.
    Furukawa, Y., Tazawa, S., Fuji, Y., Harada, I.: Synth. Met. 24, 329 (1988)CrossRefGoogle Scholar
  947. 947.
    Yano, J.L J. Electrochem. Soc. 144, 477 (1997)Google Scholar
  948. 948.
    Inganäs, O.: Electroactive polymers in large area chromogenics. In: Lampert, C.M., Granqvist, C.G. (eds.) Proc. SPIE, Large-area chromogenics: materials and devices for transmittance control, vol. IS4, p. 328. SPIE Optical Engineering Press, Bellingham (1990)Google Scholar
  949. 949.
    Mastragostino, M.: Electrochromic devices. In: Scrosati, B. (ed.) Applications of electroactive polymers, p. 223. Chapman & Hall, New York (1993)CrossRefGoogle Scholar
  950. 950.
    Kim, E., Lee, K.-Y., Lee, M.-H., Shin, J.-S., Rhee, S.B.: Synth. Met. 85, 1367 (1997)CrossRefGoogle Scholar
  951. 951.
    Yamasaki, S., Terayama, K., Yano, J.: J. Electrochem. Soc. 143, L212 (1996)CrossRefGoogle Scholar
  952. 952.
    Tourillon, G.: Polythiophene and its dervatives. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 293. Marcel Dekker, Inc., New York (1986)Google Scholar
  953. 953.
    Neugebauer, R., Neckel, A., Brinda-Konopil, N.: In situ infrared spectro-electrochemical investigations of polythiophenes. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of polymers and related compounds, vol. 69, p. 226. Springer, New YorkGoogle Scholar
  954. 954.
    Meador, M.A., Gaier, J.R., Good, B.S., Sharp, G.R., Meador, M.A.: A review of properties and potential aerospace applications of electrically conducting polymers. In: Internal report national aeronautics and space administration, pp. 1–21. Lewis Research Center, Cleveland (1989)Google Scholar
  955. 955.
    Yang, S.C.: Conducting polymer as electrochromic material: polyaniline. In: Lampert, C.M., Granqvist, C.G. (eds.) Proc. SPIE, Large-area chromogenics, materials and devices for transmittance control, vol. IS4, p. 335. SPIE Optical Engineering Press, Washington, DC (1990)Google Scholar
  956. 956.
    Chandrasekhar, P., Gumbs, R.W.: J. Electrochem. Soc. 138, 1337 (1991)CrossRefGoogle Scholar
  957. 957.
    Onoda, M., Iwasa, T., Kawai, T., Nakayama, J., Nakahara, H., Yoshino, K.: J. Electrochem. Soc. 140, 397 (1993)CrossRefGoogle Scholar
  958. 958.
    Guay, J., Paynter, R., Dao, L.H.: Macromolecules. 23, 3598 (1990)CrossRefGoogle Scholar
  959. 959.
    Duffie, J.A., Beckman, W.A.: Radiation characteristics of opaque materials. In: Solar engineering of thermal processes, p. 184. Wiley, New York (1991)Google Scholar
  960. 960.
    Wake, L.V.: Principles and formulation of solar reflecting and low IR emitting coatings for defense use, p. AD-A218429. Avail. Fr. Defense Technical Information Center, Washington, DC (1989)Google Scholar
  961. 961.
    Inganäs, O., Gustafsson, G., Salaneck, W.R.: Synth. Met. 28, C377 (1989)CrossRefGoogle Scholar
  962. 962.
    Gustafsson, G., Inganäs, O., Salaneck, W.R., Laakso, J., Loponen, M., Taka, T., Österholm, J.-E., Stubb, H., Hjertberg, T.: Processable conducting poly (3-alkylthiopenes). In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 315. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  963. 963.
    Inganäs, O., Salaneck, W.R., Österholm, J.-E., Laakso, J.: Synth. Met. 22, 395 (1988)CrossRefGoogle Scholar
  964. 964.
    Hirota, N., Hisamatsu, N., Maeda, S., Tsukahara, H., Hyodo, K.: Synth. Met. 80, 67 (1996)CrossRefGoogle Scholar
  965. 965.
    Patil, A.O.: Synth. Met. 28, C495 (1989)CrossRefGoogle Scholar
  966. 966.
    Liu, M., Gregory, R.V.: Synth. Met. 72, 45 (1995)CrossRefGoogle Scholar
  967. 967.
    Lanzi, M., Bizzarri, P.C., Casa, C.D.: Synth. Met. 89, 181 (1997)CrossRefGoogle Scholar
  968. 968.
    Chandrasekhar, P., Zay, B.J., Lawrence, D., Caldwell, E., Sheth, R., Stephan, R., Cornwell, J.: Variable-emittance IR-electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes and semiconductor/polymer coatings, for spacecraft thermal control. Appl. Polymer. 131(19), 40850 (2014)Google Scholar
  969. 969.
    Quill Work V.4Google Scholar
  970. 970.
    Diaz, A.F., Castillo, J.I., Logan, J.A., Lee, W.-Y.: J. Electroanal. Chem. 129, 115 (1981)CrossRefGoogle Scholar
  971. 971.
    Kawai, T., Iwasa, T., Onada, M., Sakamoto, T., Yoshino, K.: J. Electrochem. Soc. 139, 3404 (1992)CrossRefGoogle Scholar
  972. 972.
    Diaz, A.F., Bargon, J.: Electrochemical synthesis of conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 81. Marcel Dekker, Inc., New York (1986)Google Scholar
  973. 973.
    Gopal, J., Vanhouten, K., Cowan, D.O., Poehler, T.O., Madsen, P.V., Searson, P.C.: Diether substitued polyanilines: Novel electrode materials. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Proc.: electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 607. Materials Research Society, Pittsburgh (1992)Google Scholar
  974. 974.
    Goldenberg, L.M., Petty, M.C., Monkman, A.P.: J. Electrochem. Soc. 141, 1573 (1994)CrossRefGoogle Scholar
  975. 975.
    Guay, J., Dao, L.H.: J. Electroanal. Chem. 274, 135 (1989)CrossRefGoogle Scholar
  976. 976.
    Arbizzani, C., Mastragostino, M., Dellepiane, G., Piaggio, P.: Chemical and electrochemical doping of PPS in sulfuric acid. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Roc.: electrical, optical, and magnetic properties of organic solid State materials, vol. 247, p. 717. Materials Research Society, Pittsburgh (1992)Google Scholar
  977. 977.
    (a) Oyama, N., Sato, M., Ohsaka, T.: Synth. Met. 29, E501 (1989). (b) Helbig, M., Hörhold. Elec. Prop. of Polymers 107, 321 (1992)Google Scholar
  978. 978.
    Chandrasekhar, P., Zay, B.J., Cai, C., Chai, Y., Lawrenced, D.: Matched-dual-polymer elecctrochromic lesnes, using new cathodically coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses. J. Appl. Polym. Sci. 131, 547–557 (2014.) 41043-1 – 41043-21Google Scholar
  979. 979.
    (a) Camurlu, P., Toppare, L.: J. Macromol. Sci. Pure Appl. Chem. 43, 449 (2006); (b) Gazotti, W.A., Casalbore-Miceli, G., Geri, A., De Paoli, M.-A: Adv. Mater. 10, 60 (1998)Google Scholar
  980. 980.
    Pickup, P.G., Osteryoung, R.A.: J. Am. Chem. Soc. 195, 271 (1985)Google Scholar
  981. 981.
    LaCroix, J.C., Diaz, A.F.: Makromol. Chem., Macromol. Symp. 8, 17 (1987)CrossRefGoogle Scholar
  982. 982.
    LaCroix, J.C., Diaz, A.F.: J. Electrochem. Soc. 135, 1457 (1988)CrossRefGoogle Scholar
  983. 983.
    LaCroix, J.C., Kanazawa, K.K., Diaz, A.: J. Electrochem. Soc. 136, 1308 (1989)CrossRefGoogle Scholar
  984. 984.
    Oyama, N., Hirabayashi, K., Ohsaka, T.: Bull. Chem. Soc. Jpn. 59, 2071 (1986)CrossRefGoogle Scholar
  985. 985.
    Bedioui, F., Bernard, P., Moisy, P., Bied-Charreton, C., Devynck, J.: Poly(Pyrrole-Cobaltpoprhyrin) film modified rlectrodes: preparation and catalytic application. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 221. Trans Tech Publications, Switzerland (1989)Google Scholar
  986. 986.
    Levi, M.D.: Mechanism and kinetics of dark redox reactions at polythiophene film electrodes. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 101. Trans Tech Publications, Switzerland (1989)Google Scholar
  987. 987.
    Gardini, G.P.: The oxidation of monocyclic pyrroles. Adv. Heterocycl. Chem. 15, 67–98 (1973)CrossRefGoogle Scholar
  988. 988.
    Zahradnik, R.: In: Snyder, J.P. (ed.) Nonbenzenoid aromatic compounds, pp. 1–80. Academic Press, Inc., New York (1971)Google Scholar
  989. 989.
    Bargon, J., Mohmand, S., Waltman, R.J.: IBM J. Res. Develop. 27, 330 (1983)Google Scholar
  990. 990.
    Tourillon, G., Garnier, F.: J. Electroanal. Chem. 161, 51 (1984)CrossRefGoogle Scholar
  991. 991.
    Tourillon, G., Garnier, F.: J. Electroanal. Chem. 135, 173 (1982)CrossRefGoogle Scholar
  992. 992.
    Street, G.B., Clarke, T.C.: IBM J. Res. Dev. 25, 51 (1981)CrossRefGoogle Scholar
  993. 993.
    Delamer, M., Lacaze, P.C., Dumousseau, J.Y., Dubois, J.E.: Electrochim. Acta. 27, 61 (1982)CrossRefGoogle Scholar
  994. 994.
    Walker, D.G., Wilson, N.E., Jr.: U.S. Patent 3,437,569, (1969); Wisdon, N.E., Jr.: U.S. Patent 3,437,57, 1969Google Scholar
  995. 995.
    Street, G.B., Clarke, T.C., Krounbi, M., Kanazawa, K.K., Lee, V., Pfluger, P., Scott, J.C., Weiser, G.: Mol. Cryst. Liq. Cryst. 83, 253 (1982)CrossRefGoogle Scholar
  996. 996.
    Street, G.B., Geiss, R.H., Lindsey, S.E., Nazzal, A., Pfluger, P.: In: Reineker, P., Haken, H., Wolf, H.C. (eds.) Proc. Conf. Electronic excitation interaction processes Org. Molec. aggregates, p. 242. Springer, New York (1983)Google Scholar
  997. 997.
    Diaz, A.F., Crowley, J.I., Bargon, J., Gardini, G.P., Torrance, J.B.: J. Electroanal. Chem. 121, 355 (1981)CrossRefGoogle Scholar
  998. 998.
    Ohsaka, T., Hirabayashi, K., Oyama, N.: Bull. Chem. Soc. Jpn. 59, 3423 (1986)CrossRefGoogle Scholar
  999. 999.
    (a) Chandrasekhar, P.: Flexible electrochromic window materials based on Poly(Diphenyl Amine) and related conducting polymers, Final Technical Report, Grant No. DE-FG05-93ER81631/A00(1,2,3) for the U.S. Department of Energy, Oak Ridge/Washinton, DC (1998); (b) Chandrasekhar, P.: Flexible electrochromic window materials based on Poly(Diphenyl Amine) and related conducting polymers, Final Report, Grant No. DE-FG05-93ER81631 for the U.S. Department of Energy, Washington, DC (1994)Google Scholar
  1000. 1000.
    Hoier, S.N., Park, S.-M.: J. Electrochem. Soc. 140, 2454 (1993)CrossRefGoogle Scholar
  1001. 1001.
    Johnson, B.J., Park, S.-M.: J. Electrochem. Soc. 143, 1277 (1996)CrossRefGoogle Scholar
  1002. 1002.
    Pickup, P.G., Osteryoung, R.A.: J. Am. Chem. Soc. 106, 2294 (1984)CrossRefGoogle Scholar
  1003. 1003.
    (a) Chandrasekhar, P., Masulaitis, A.M., Gumbs, R.W.: Synth. Met. 36, 303 (1990); (b) Wudl, F., Ikenoue, Y., Patil, A. O. In: Prasad, P.N., Ulrich, D.R. (eds.) Nonlinear optical and electroactive polymers. p. 393 Plenum, New York (1988)Google Scholar
  1004. 1004.
    Chandrasekhar, P.: Flexible, visible/IR flat panel electrochromics based on poly (Diphenyl Amine) and related conducting polymers, Final Report, Contract No. N00014-95-C-0069 Office of Naval Research, Arlington, Virginia (1995)Google Scholar
  1005. 1005.
    Heinze, J., Dietrich, M.: Cyclic voltammetry as a tool for characterizing conducting polymers. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 79. Trans Tech Publications, Switzerland (1989)Google Scholar
  1006. 1006.
    Segawa, H., Shimidzu, T., Honda, K.: J. Chem. Soc. Chem. Commun. 132 (1989)Google Scholar
  1007. 1007.
    Smyrl, W.H., Lien, M.: Electrical and electrochemical properties of electronically conducting polymers. In: Srosati, B. (ed.) Applications of electroactive polymers, p. 29. Chapman & Hall, New York (1993)CrossRefGoogle Scholar
  1008. 1008.
    Han, J.H., Motobe, T., Whang, Y.E., Miyata, S.: Synth. Met. 45, 261–1991Google Scholar
  1009. 1009.
    Street, G.B.: Polyrrole from powders to plastics. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 265. Marcel Dekker, Inc., New York (1986)Google Scholar
  1010. 1010.
    Krische, B., Zagorska, M.: In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 79. Transtech Publications, Switzerland (1989)Google Scholar
  1011. 1011.
    (a) Kossmehl, G., Chatzitheodorou, G.: Mol. Cryst. Liq. Cryst. 83, 291 (1982); (b) Kossmehl, G., Chatzitheodorou, G.: Makromol. Chem. Rap. Commun. 2, 551 (1981)Google Scholar
  1012. 1012.
    Angelopoulos, M., Shaw, J.M., Kaplan, R.D., Perrault, S.: J. Vac. Sci. Tech. B7, 1519 (1989)CrossRefGoogle Scholar
  1013. 1013.
    Elsenbaumer, R.L., Jen, K.Y., Oboodi, R.: Synth. Met. 15, 169 (1986))CrossRefGoogle Scholar
  1014. 1014.
    Machida, S., Miyata, S., Techagumpuch, A.: Synth. Met. 31, 311 (1989)CrossRefGoogle Scholar
  1015. 1015.
    Whang, Y.E., Han, J.H., Nalwa, H.S., Watanabe, T., Miyata, S.: Synth. Met. 41–43, 3043 (1991)CrossRefGoogle Scholar
  1016. 1016.
    (a) Katz, T.J., Lee, S.J.: J. Am. Chem. Soc. 102, 422 (1980); (b) Katz, T.J., Lee, S.J., Shippey, M.A.: J. Mol. Cat. 8, 219 (1980)Google Scholar
  1017. 1017.
    Rubner, M., Deits, W.: J. Polym. Sci. Polym. Chem. Ed. 20, 2043 (1982)Google Scholar
  1018. 1018.
    Masuda, J., Takahashi, T., Higashimura, T.: J. Chem. Soc. Chem. Commun. 1297 (1982)Google Scholar
  1019. 1019.
    Thakur, M., Lando, J.B.: Macromolecules 16, 143 (1983)Google Scholar
  1020. 1020.
    Hotta, S., Soga, M., Sonoda, N.: Synth. Met. 26, 267 (1988)Google Scholar
  1021. 1021.
    Feast, W.J.: Synthesis of conducting polymers. In: p (ed.) Handbook of conducting olymers, vol. 1, p. 1. Marcel Dekker, Inc., New York (1986)Google Scholar
  1022. 1022.
    Brown, A.R., Greenham, N.C., Gymer, R.W., Pichler, K., Bradley, D.D.C., Friend, R.H., Burn, P.L., Kraft, A., Holmes, A.B.: Conjugated polymer light-emitting diodes. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 87. Kluwer Academic Publisdhers, Boston (1993)CrossRefGoogle Scholar
  1023. 1023.
    Bao, Z., Yu, L.: In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528. SPIE Optical Engineering Press, Bellingham; Proc. SPIE (1995)Google Scholar
  1024. 1024.
    Freund, M.S., Karp, C., Lewis, N.S.: Curr. Sep. 13, 6 (1994)Google Scholar
  1025. 1025.
    Aldissi, M.: J. Polym. Sci. Polym. Lett. Ed. 23, 167 (1985)Google Scholar
  1026. 1026.
    Alva, K.S., Kumar, J., Marx, K.A., Tripathy, S.K.: Macromolecules 30, 4024 (1997)Google Scholar
  1027. 1027.
    Cruz, G.J., Morales, J., Castillo-Ortega, M.M., Olayo, R.: Synth. Met. 88, 213 (1997)Google Scholar
  1028. 1028.
    Schäfer, O., Greiner, A., Pommerehne, J., Guss, W., Vestweber, H., Tak, H.Y., Bässler, H., Schmidt, C., Lüssem, G., Schartel, B., Stümpflen, V., Wendorff, J.H., Spiegel, S., Möller, C., Spiess, H.W.: Synth. Met. 82,1 (1996)