Seamless Healthcare Monitoring pp 103-126 | Cite as
Blood Pressure
- 1 Citations
- 1.2k Downloads
Abstract
Blood pressure is the most important physiological parameter. A cuff-based sphygmomanometer is commonly used but handling needs great care in terms of cuff size, position of cuff, and so on. A simple handling of wearable blood pressure monitor is desired. Currently, watch-type blood pressure monitor is under development. Whereas cuffless blood pressure monitor has been attempted. Either difference of two pulse wave transit time or R wave of ECG corresponding pulse wave is used to estimate in blood pressure based on biomechanical properties. In this chapter, currently available cuff-based sphygmomanometer is reviewed and then the development of cuffless blood pressure is presented.
Keywords
Hypertension Cuff based Blood stiffness PPG ECG Cuffless Pulse transit time (PTT) Pulse arrival time (PAT) Pulse wave velocity (PWV)References
- 1.Whelton, P. K., Carey, R. M., Aronow, W. S. et al. (2017). ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults hypertension. HYP.0000000000000065, originally published November 13, 2017. https://doi.org/10.1161/HYP.0000000000000065
- 2.Magid, D. J., Olson, K. L., Billups, S. J., Wagner, N. M., Lyon, E. E., & Kroner, BA. (2013). A Pharmacist-Led, American Heart Association Heart360 Web-Enabled Home Blood Pressure Monitoring Program Circulation: Cardiovascular Quality and Outcomes, Circoutcomes, 112968172.Google Scholar
- 3.Williams, B., Lacy, P. S., Thom, S. M., Cruickshank, K., Stanton, A., Collier, D., Hughes, A. D., Thurston, H., & O’Rourke, M. (2006). Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation, 113, 1213–1225.CrossRefGoogle Scholar
- 4.McEniery, C. M., Cockcroft, J. R., Roman, M. J., Franklin, S. S., & Wilkinson, I. B. (2014). Central blood pressure: Current evidence and clinical importance. European Heart Journal, 35(26), 1719–1725.CrossRefGoogle Scholar
- 5.WHO Key consideration and step-by-step guidline: Developing national strategies for phasing out mercury-containing thermometers and sphygmomanometers in health care, including in the context of the Minamata Convention on Mercury. http://www.who.int/ipcs/assessment/public_health/WHOGuidanceReportonMercury2015.pdf. Accessed 31 Jan 2017.
- 6.Campbell, N. R., Chockalingam, A., Fodor, J. G., & McKay, D. W. (1990). Accurate, reproducible measurement of blood pressure. CMAJ, 143, 19–24.Google Scholar
- 7.Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G., & Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation, 111, 697–716.CrossRefGoogle Scholar
- 8.Borow, K. M., & Newburger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: Comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurement. American Heart Journal, 103(5), 879–886.CrossRefGoogle Scholar
- 9.Shimazu, H. (2017, February). Method for and evaluation of the indirect measurement of arterial stiffness index. http://www.osachi.jp/English/Technology/detail/ASI.html. Accessed 20.
- 10.Ding, X.-R., Ni, N. Z., Yang, G.-Z., Pettigrew, R. I., Lo, B., Miao, F., Li, Y., Liu, J., & Zhang, Y.-T. (2016). Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics, 20, 1455–1465.CrossRefGoogle Scholar
- 11.Penaz, J. (1973). Photoelectronic measurement of blood pressure, volume and flow in the finger. Digest of the 10th international conference on Medical and Biological Engineering, Dresden, Germany, p. 104.Google Scholar
- 12.van Egmond, J., Hasenbos, M., & Crul, J. F. (1985). Invasive v. non-invasive measurement of arterial pressure. Comparison of two automatic methods and simultaneously measured direct intra-arterial pressure. British Journal of Anaesthesia, 57, 434–444.CrossRefGoogle Scholar
- 13.Parati, G., Casadei, R., Groppelli, A., Di Rienzo, M., & Mancia, G. (1989). Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension, 13(6 Pt 1), 647–655.CrossRefGoogle Scholar
- 14.Drzewiecki, G. M., Melbin, J., & Noordergraaf, A. (1983). Arterial tonometry: Review and analysis. Journal of Biomechanics, 16, 141–152.CrossRefGoogle Scholar
- 15.Smulyan, H., Siddiqui, D. S., Carlson, R. J., London, G. M., & Safar, M. E. (2003). Clinical utility of aortic pulses and pressures calculated from applanated radialartery pulses. Hypertension, 42, 150–155.CrossRefGoogle Scholar
- 16.Miyashita, H. (2012). Clinical assessment of Central Blood Pressure. Current Hypertension Reviews, 8(2), 80–90.CrossRefGoogle Scholar
- 17.Garcia-Ortiz, L., Recio-Rodríguez, J. I., Canales-Reina, J. J., Cabrejas-Sánchez, A., Gomez-Arranz, A., Magdalena-Belio, J. F., Guenaga-Saenz, N., Agudo-Conde, C., & Gomez-Marcos, M. A. (2012). on behalf of the EVIDENT Group: Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertension Research, 35, 617–623.CrossRefGoogle Scholar
- 18.Ott, C., Haetinger, S., Schneider, M. P., Pauschinger, M., & Schmieder, R. E. (2012). Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. Journal of Clinical Hypertension (Greenwich, Conn.), 14, 575–579.CrossRefGoogle Scholar
- 19.Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., Heffernan, K. S., Lakatta, E. G., McEniery, C. M., Mitchell, G. F., Najjar, S. S., Nichols, W. W., Urbina, E. M., & Weber, T. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness. A scientific statement from the American Heart Association. Hypertension, 66, 698–722.CrossRefGoogle Scholar
- 20.Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R., & Levy, B. I. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement validation and clinical application studies. Hypertension, 26(3), 485–490.CrossRefGoogle Scholar
- 21.Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., & Togawa, T. (2000). Continuous estimation of systolic BP using the pulse arrival time and intermittent calibration. Medical and Biological Engineering Computing, 38(5), 569–574.CrossRefGoogle Scholar
- 22.Poon, C. C. Y., & Zhang, Y. T. (2005). Cuff-less and noninvasive measurements of arterial BP by pulse transit time. Proceedings of the 27th international conference on IEEE-Engineering in Medicine and Biology Society Aug (EMBC 2005), pp. 5877–5880.Google Scholar
- 23.IEEE standard for Wearable, Cuffless Blood Pressure Measuring Devices: IEEE std 1708, 2014.Google Scholar
- 24.Zhang, G., Gao, M., Xu, D., Olivier, N. B., & Mukkamala, R. (2011). Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. Journal of Applied Physiology (1985), 111(6), 1681–1686.CrossRefGoogle Scholar
- 25.Sola, J., Proenc, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., Allemann, Y., Rimoldi, S. F., & Sartori, C. (2013). Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Transactions on Biomedical Engineering, 60(12), 3505–3513.CrossRefGoogle Scholar
- 26.Wong, M. Y., Pickwell-MacPherson, E., Zhang, Y. T., & Cheng, J. C. (2011). The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. European Journal Applied Physiology, 111(1), 135–144.CrossRefGoogle Scholar
- 27.Wibmer, T., Doering, K., Kropf-Sanchen, C., Rüdiger, S., Blanta, I., Stoiber, K. M., Rottbauer, W., & Schumann, C. (2014). Pulse transit time and blood pressure during cardiopulmonary exercise tests. Physiological Research, 63, 287–296.Google Scholar
- 28.Gao, M., Olivier, N. B., & Mukkamala, R. (2016). Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiological Reports, 4(10), e12768.CrossRefGoogle Scholar
- 29.Zhang, G., Cottrell, A. C., Henry, I. C, & McCombie, D. B. (2016). Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor. 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3386–3389.Google Scholar
- 30.Martin, S. L., Carek, A. M., Kim, C. S., Ashouri, H., Inan, O. T., Hahn, J. O., & Mukkamala, R. (2016). Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Scientific Reports, 6, 39273. https://doi.org/10.1038/srep39273.CrossRefGoogle Scholar
- 31.ANSI/AAMI/ISO. ANSI/AAMI/ISO 81060–2:20132: Non-invasive sphygmonanometers–Part 2: Clinical investigation of automated measurement type. American National Standard 1 A.D.Google Scholar
- 32.Friedman, B. A., Alpert, B. S., Osborn, D., et al. (2008). Assessment of the validation of blood pressure monitors: A statistical reappraisal. Blood Pressure Monitoring, 13, 187–191.CrossRefGoogle Scholar
- 33.Stergiou, G. S., Karpettas, N., Atkins, N., & O’Brien, E. (2010). European society of hypertension international protocol for the validation of blood pressure monitors: A critical review of its application and rationale for revision. Blood Pressure Monitoring, 15(1), 39–48.CrossRefGoogle Scholar
- 34.Stergiou, G. S., Parati, G., Asmar, R., et al. (2012). European society of hypertension working group on blood pressure monitoring. Requirements for professional office blood pressure monitors. Journal of Hypertension, 30, 537–542.CrossRefGoogle Scholar
- 35.Beime, B., Deutsch, C., Gomez, T., Zwingers, T., Mengden, T., & Bramlage, P. (2016). Validation protocols for blood pressure-measuring devices: Status quo and development needs. Blood Pressure Monitoring, 21(1), 1–8.CrossRefGoogle Scholar
- 36.Dable educational trust Blood pressure monitories, validations, paper and reviews. http://www.dableducational.org/ index.html. Accessed 3 Mar 2017.
- 37.Topouchain, J., Zelveyan, P., Hakobyan, Z., Melkonyan, A, & Asmar, R.(2016, July 8). Validation of the QARDIO QARDIOARM upper arm blood pressure monitor, in oscillometry mode, for self measurement in persons fulfilling the population as described in this paper, according to the European Society of Hypertension International Protocol revision 2010. [Internet]. Dublin: dablEducational Trust, 4 p. Available from http://www.dableducational.org/Publications/2016/ESH-IP 2010 Validation of QARDIO QARDIOARM.pdf
- 38.Takahashi, H. (2016, November 28) Validation of the Omron EVOLV (HEM-7600T-E) upper arm blood pressure monitor, in oscillometry mode, for self measurement in a general population, according to the European Society of Hypertension International Protocol revision 2010 [Internet]. Dublin: dabl Educational Trust. Available from http://www.dableducational.org/Publications/2016/ESH-IP 2010 Validation of HEM-7600T-E.pdf
- 39.Khoshdel, A. R., Carney, S., & Gillies, A. (2010). The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population. International Journal of General Medicine, 3, 119–125.CrossRefGoogle Scholar
- 40.Bloch, M. J., & Basile, J. N. (2011). New British guidelines mandate ambulatory blood pressure monitoring to diagnose hypertension in all patients: Not ready for prime time in the United States. The Journal of Clinical Hypertension, 13(11), 785–786.CrossRefGoogle Scholar
- 41.US. Preventive Service ask Force, Final recommendation statement, High blood pressure in adults, screening. https://www.uspreventiveservicestaskforce.org/. Accessed 3 Mar 2017.
- 42.O’Brien, E. (2013). On behalf of the European Society of Hypertension Working Group on Blood Pressure Monitoring European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. Journal of Hypertension, 31, 1731–1768.CrossRefGoogle Scholar
- 43.Parati, G., Stergiou, G., O'Brien, E., Asmar, R., Beilin, L., Bilo, G., Clement, D., de la Sierra, A., de Leeuw, P., Dolan, E., Fagard, R., Graves, J., Head, G. A., Imai, Y., Kario, K., Lurbe, E., Mallion, J. M., Mancia, G., Mengden, T., Myers, M., Ogedegbe, G., Ohkubo, T., Omboni, S., Palatini, P., Redon, J., Ruilope, L. M., Shennan, A., Staessen, J. A., vanMontfrans, G., Verdecchia, P., Waeber, B., Wang, J., Zanchetti, A., & Zhang, Y. (2014). European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. Journal of Hypertension, 32(7), 1359–1366.CrossRefGoogle Scholar
- 44.Palatini, P., Frigo, G., Bertolo, O., Roman, E., Da Corta, R., & Winnicki, M. (1998). Validation of the 2012 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects’ characteristics. Blood Pressure Monitoring, 3, 255–260.Google Scholar
- 45.Jones, S. C., Bilous, M., Winship, S., Finn, P., & Goodwin, J. (2004). Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Pressure Monitoring, 9, 219–223.CrossRefGoogle Scholar
- 46.Yip, G. W., So, H. K., Li, A. M., Tomlinson, B., Wong, S. N., & Sung, R. Y. (2012). Validation of A&D TM-2430 upper-arm blood pressure monitor for ambulatory blood pressure monitoring in children and adolescents, according to the British Hypertension Society protocol. Blood Pressure Monitoring, 17(2), 76–79.CrossRefGoogle Scholar
- 47.Nair, D., Tan, S.-Y., Gan, H.-W., Lim, S.-F., Tan, J., Zhu, M., Gao, H., Chua, N.-H., Peh, W.-L., & Mak, K.-H. (2008). The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: The validation of a novel wrist-bound device in adults. Journal of Human Hypertension, 22, 220–222.Google Scholar
- 48.Wong, M. Y. M., Poon, C. C. Y., & Zhang, Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects. Cardiovascular Engineering (Dordrecht, Netherlands)., 9, 32–38.Google Scholar
- 49.Masè, M., Walter Mattei, W., Cucino, R., Faes, L., & Nollo, G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. Journal of Electrocardiology, 44, 201–207.CrossRefGoogle Scholar
- 50.Gesche, H., Grosskurth, D., Küchler, G., & Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. European Journal of Applied Physiology, 112, 309–315.CrossRefGoogle Scholar
- 51.Younessi Heravi, M. A., Khalilzadeh, M. A., & Joharinia, S. (2014). Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals by using Microsoft Visual C Sharp. Journal of Biomedical Physics & Engineering, 4(1), 27–32.Google Scholar
- 52.Ding, X.-R., Zhang, Y.-T., Liu, J., Dai, W.-X., & Tsang, H. K. (2016). Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical Engineering BME, 63(5), 964–972.CrossRefGoogle Scholar
- 53.Hennigand, A., & Patzak, A. (2013). Continuous blood pressure measurement using pulse transit time. Somnologie, 17, 104–110.CrossRefGoogle Scholar
- 54.Kim, J. S., Kim, K. K., Baek, H. J., & Park, K. S. (2008). Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiological Measurement, 29, 615–624.CrossRefGoogle Scholar
- 55.Chen, Y., Wen, C., Tao, G., Bi, M., Li, G., et al. (2009). Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Annals of Biomedical Engineering, 37(11), 2222–2233.CrossRefGoogle Scholar
- 56.Forouzanfar, M., Ahmad, S., Batkin, I., Dajani, H. R., Groza, V. Z., & Bolic, M. (2013). Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Transactions on Biomedical Engineering BME, 60(7), 1814–1824.CrossRefGoogle Scholar
- 57.McCarthy, B. M., Vaughan, C. J., O'Flynn, B., Mathewson, A., & Mathúna, C. O. (2013). An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms. Journal of Human Hypertension, 27, 744–750.CrossRefGoogle Scholar
- 58.Thomas, S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., & Jafari, R. (2016). BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics, 20(5), 1291–1300.CrossRefGoogle Scholar
- 59.Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., & Pathapati Subbu, K. (2013). Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 60(4), 1080–1089.CrossRefGoogle Scholar
- 60.Schoot, T. S., Weenk, M., van de Belt, T. H., JLPG, E. L., van Goor, H., & JH, B. S. (2016). A new cuffless device for measuring blood pressure: A reallife validation study. Journal of Medical Internet Research, 18(5), e85.CrossRefGoogle Scholar
- 61.Futatsuyama, K., Mitsumoto, N., Kawachi, T., & Nakagawa, T. (2011). Noise robust optical sensor for driver’s vital signs, SAE Technical Paper, 2011-01-1024.Google Scholar
- 62.Tang, Z., Tamura, T., Sekine, M., Huang, A., Chen, W., Yoshid, M., Sakatani, K., Kobayashi, H., & Kanaya, S. A. (2016). Chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE Journal of Biomedical Health Informatics. https://doi.org/10.1109/JBHI.2016.2614962.
- 63.Liu, Q., Yan, B. P., Yu, C.-M., Zhang, Y.-T., & Poon, C. C. Y. (2014). Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients. IEEE Transactions on Biomedical Engineering, 61(2), 346–352.CrossRefGoogle Scholar
- 64.Zheng, Y., Poon, C. C. Y., Yan, B. P., & Lau, J. Y. W. (2016). Pulse arrival time based cuff-less and 24-H wearable blood pressure monitoring and its diagnostic value in hypertension. Journal of Medical System, 40, 195.CrossRefGoogle Scholar
- 65.Mukkamala, R., Hahn, J. O., Inan, O. T., Mestha, L. K., Kim, C. S., Töreyin, H., & Kyal, S. (2015). Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE Transactions on Biomedical Engineering, 62(8), 1879–1901.CrossRefGoogle Scholar
- 66.Nabeel, P. M., Joseph, J., Awasthi, V., & Sivaprakasam, M. (2016). Single source photoplethysmograph transducer for local pulse wave velocity measurement. Proceedings of the IEEE 38th annual international conference on Engineering in Medicine and Biology Society (EMBC) 2016, pp. 4256–4259.Google Scholar
- 67.Hsu, Y.-P., & Young, D. J. (2014). Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sensors Journal, 14(10), 3490–3497.CrossRefGoogle Scholar
- 68.Wu, Chih. -C., & Chao, P. C.-P. (2016). Validation of the Freescan pulse transit time-based blood pressure monitor Journal of Hypertension, Poster Session 05–04.Google Scholar
- 69.Boubouchairopoulou, N., & Stergiou, G. S. (2017). A novel cuffless device for self-measurement of bloodpressure: Concept, performance and clinical validation. Journal of Human Hypertension, 31, 479–482. https://doi.org/10.1038/jhh.2016.101.
- 70.Verberk, W. J., Cheng, H. M., Huang, L. C., Lin, C. M., Teng, Y. P., & Chen, C. H. (2016). Practical suitability of a stand-alone oscillometric Central Blood Pressure Monitor: A review of the Microlife WatchBP Office Central. Pulse (Basel), 3(3–4), 205–221.CrossRefGoogle Scholar
- 71.Smith, L. A., Dawes, P. J., & Galland, B. C. (in press). The use of pulse transit time in pediatric sleep studies: A systematic review. Sleep Medicine Reviews. https://doi.org/10.1016/j.smrv.2016.11.006.