• Jun AkazawaEmail author
  • Masaki Yoshida
  • Takemasa Okamoto
  • Kazuhiko Taniguchi


In recent years, wireless surface electromyography (SEMG) measurement devices that do not restrict the movement of the wearer have attracted interest in the fields of medicine and sport. Through this review, the reader will develop an understanding of current technologies and potential development.

This section is largely divided into two parts that describe the basic characteristics of EMG and SEMG applications. First, the basic components of EMG will be discussed, as they are useful when focusing on SEMG applications. The physiological information that can be produced with EMG, and SEMG measurement and analysis methods, will be described. Second, specific medical conditions such as lower back pain, stroke, epilepsy, and Parkinson’s disease will be discussed, and the measurement of muscle activity and the information that can be extracted from EMG using smart SEMG measurement devices and systems will be examined. We then focus on the applications of SEMG in sports science, as SEMG have been integrated into wearable platforms such as clothing and textiles; however, a number of problems remain in this regard.


Wearable and attachable surface electromyography sensors and systems Epilepsy Stroke Parkinson’s disease Human machine interface Textile electrodes 


  1. 1.
    Merletti, R., & Parker, P. (2004). Electromyography: Physiology, engineering, and non-invasive applications (pp. 1–471). Hoboken: IEEE Press/Wiley.CrossRefGoogle Scholar
  2. 2.
    Buchthal, F., & Schmalbruch, H. (1980). Motor unit of mammalian muscle. Physiological Reviews, 60(1), 90–142.Google Scholar
  3. 3.
    Akazawa, J., & Okuno, R. (2015). SMUAP Decomposition based on sequentially-modified template matching method during motion. 37th annual international conference of the IEEE Engineering in Medicine and Biology Society, 25–29 Aug 2015. Milano.Google Scholar
  4. 4.
    Stegeman, D., & Hermens, H. (2016). Standards for surface electromyography: The European project Surface EMG for noninvasive assessment of muscles (SENIAM). Available online: [Online]. Available: Accessed 4 Jan 2017.
  5. 5.
    Supuk, T. G., Skelin, A. K., Cic, M. (2014). Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait. Sensors (Basel), 14(5), 8235–58. [Online]. Available: Accessed 4 Jan 2017.
  6. 6.
    Merletti, R., & Lo Conte, L. R. (1997). Surface EMG signal processing during isometric contractions. Journal of Electromyography and Kinesiology, 7(4), 241–250.CrossRefGoogle Scholar
  7. 7.
    Xiang, Y., Pant, B., Eisen, A., Beddoes, M. P., & Poole, D. (1993). Multiply sectioned Bayesian networks for neuromuscular diagnosis. Artificial Intelligence in Medicine, 5, 293–314.CrossRefGoogle Scholar
  8. 8.
    Pfeiffer, G. (1999). The diagnostic power of motor unit potential analysis: An objective Bayesian approach. Muscle & Nerve, 22(5), 584–591.CrossRefGoogle Scholar
  9. 9.
    Barutcuoglu, Z., & DeCoro, C. (2006). Hierarchical shape classification using Bayesian aggregation. Shape modeling international, 44–48.Google Scholar
  10. 10.
    Abel, E., Zacharia, P., Forster, A., & Farrow, T. (1996). Neural network analysis of the EMG interference pattern. Medical Engineering & Physics, 18(1), 12–17.CrossRefGoogle Scholar
  11. 11.
    Pandey, B., & Mishra, R. B. (2009). An integrated intelligent computing model for the interpretation of EMG based neuromuscular diseases. Expert Systems with Applications, 36(5), 9201–9213.CrossRefGoogle Scholar
  12. 12.
    Yousefi, J., & Hamilton-Wright, A. (2014). Characterizing EMG data using machine-learning tools. Computers in Biology and Medicine, 51, 1–13.CrossRefGoogle Scholar
  13. 13.
    Christodoulou, C. I., & Pattichis, C. S. (1999). Unsupervised pattern recognition for the classification of EMG signals. IEEE Transactions on Biomedical Engineering, 46, 169–178.CrossRefGoogle Scholar
  14. 14.
    Hamilton-Wright, A., Stashuk, D. W., & Tizhoosh, H. R. (2007). Fuzzy classification using pattern discovery. IEEE Transactions on Fuzzy Systems, 15(5), 772–783.CrossRefGoogle Scholar
  15. 15.
    Alkan, A., & Günay, M. (2012). Identification of EMG signals using discriminant analysis and SVM classifier. Expert Systems with Applications, 39(1), 44–47.CrossRefGoogle Scholar
  16. 16.
    Ceseracciu, E., Reggiani, M., Sawacha, Z., Spolaor, F., Sartori, M., Pagello, E., & Cobelli, C. (2011). SVM-based classification of EMG signals for enhanced interfaces in lower extremities exoskeletons. Gait & Posture, 33, S30–S31.CrossRefGoogle Scholar
  17. 17.
    Koçer, S. (2010). Classification of EMG signals using neuro-fuzzy system and diagnosis of neuromuscular diseases. Journal of Neuroscience Methods, 34, 321–329. Scholar
  18. 18.
    Gokgoz, E., & Subasi, A. (2015). Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control, 18, 138–144.CrossRefGoogle Scholar
  19. 19.
    Su, R., Chen, X., Cao, S., & Zhang, X. (2016). Random forest-based recognition of isolated sign language subwords using data from accelerometers and surface electromyographic sensors. Sensors (Basel, Switzerland), 16(1), 100.Google Scholar
  20. 20.
    Artameeyanant, P., Sultornsanee, S., & Chamnongthai, K. (2016). An EMG-based feature extraction method using a normalized weight vertical visibility algorithm for myopathy and neuropathy detection. Springer Plus, 5(1), art. no. 2101.Google Scholar
  21. 21.
    Atzori, M., Cognolato, M., & Müller, H. (2016). Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands. Frontiers in Neurorobotics, 10, 9. Scholar
  22. 22.
    Du, Y., Jin, W., Wei, W., Hu, Y., & Geng, W. (2017). Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation. Sensors (Switzerland), 17(3), 458.CrossRefGoogle Scholar
  23. 23.
    Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., & Li, J. (2016). Gesture recognition by instantaneous surface EMG images. Scientific Reports, 6, art. no.36571.Google Scholar
  24. 24.
    Zhai, X., Jelfs, B., Chan, R. H. M., & Tin, C. (2017). Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Frontiers in Neuroscience.
  25. 25.
    Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning, Adaptive computation and machine learning series (p. 800). The MIT Press.Google Scholar
  26. 26.
    Murphy, K. P. (2012). Machine learning: A probabilistic perspective, Adaptive computation and machine learning series (p. 1104). The MIT Press.Google Scholar
  27. 27.
    Champagne, A., Descarreaux, M., & Lafond, D. (2008). Back and hip extensor muscles fatigue in healthy subjects: Task-dependency effect of two variants of the Sorensen test. European Spine Journal, 71(12), 1721–1726. [Online]. Accessed 3 Mar 2017.
  28. 28.
    Kramer, M., Ebert, V., Kinzl, L., Dehner, C., Elbel, M., & Hartwig, E. (2005). Surface electromyography of the paravertebral muscles in patients with chronic low back pain. Archives of Physical Medicine and Rehabilitation, 86(1), 31–36. [Online]. Available: Accessed 3 Mar 2017.
  29. 29.
    Mohseni Bandpei, M. A., Rahmani, N., Majdoleslam, B., Abdollahi, I., Ali, S. S., & Ahmad, A. (2014). Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: An updated systematic review. Journal of Manipulative and Physiological Therapeutics, 37(7), 510–521. [Online]. Available: Accessed 3 Mar 2017.
  30. 30.
    Al-Mulla, M. R., Sepulveda, F., & Colley, M. (2011). An autonomous wearable system for predicting and detecting localised muscle fatigue. Sensors (Basel), 11(2), 1542–1557. [Online]. Available: Accessed 3 Mar 2017.
  31. 31.
    Kent, P., Laird, R., & Haines, T. (2015). The effect of changing movement and posture using motion-sensor biofeedback, versus guidelines-based care, on the clinical outcomes of people with sub-acute or chronic low back pain-a multicentre, cluster-randomised, placebo-controlled, pilot trial. BMC Musculoskeletal Disorders, 16(131), [Online]. Available: Accessed 3 Mar 2017.
  32. 32.
    Lorussi, F., Carbonaro, N., De Rossi, D., Paradiso, R., Veltink, P., & Tognetti, A. (2016). Wearable textile platform for assessing stroke. Patient treatment in daily life conditions. Frontiers in Bioengineering and Biotechnology. [Online]. Available:| Accessed 3 Mar 2017.
  33. 33.
    Roy, S. H., Cheng, M. S., Chang, S.-S., Moore, J., De Luca, G., Nawab, S. H., De Luca, C. J. (2009). A combined sEMG and accelerometer system for monitoring functional activity in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, issue date [Online]. Available: Accessed 3 Mar 2017.
  34. 34.
    Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel Jr., J. (2005). Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472. Accessed 3 Mar 2017.
  35. 35.
    Conradsen, I., Beniczky, S., Wolf, P., Jennum, P., & Sorensen, H. B. D. (2012). Evaluation of novel algorithm embedded in a wearable sEMG device for seizure detection. Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. [Online]. Available: Accessed 3 March 2017.
  36. 36.
    Endo, T., Okuno, R., Yokoe, M., Akazawa, K., & Sakoda, S. (2009). A novel method for systematic analysis of rigidity in Parkinson’s disease. Mov Disord, 24(15), 2218–2224.Google Scholar
  37. 37.
    Cole, B. T., Roy, S. H., De Luca, C. J., & Nawab S. H. (2014). Dynamical learning and tracking of tremor and dyskinesia from wearable sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(5), 982–991. [Online]. Available: Accessed 3 Mar 2017.
  38. 38.
    Geethanjali, P. (2016). Myoelectric control of prosthetic hands: State-of-the-art review. Med Devices (Auckl), 9, 247–255. [Online]. Available: Accessed 3 Mar 2017.
  39. 39.
    Hargrove, L. J., Simon, A. M., Young, A. J., Lipschutz, R. D., Finucane, S. B., Smith, D. G., & Kuiken, T. A. (2013). Robotic leg control with EMG decoding in an amputee with nerve transfers. New England Journal of Medicine, 369, 1237–1242. [Online]. Available: Accessed 3 Mar 2017.
  40. 40.
    Rainoldi, A., Cescon, C., Bottin, A., Casale, R., & Caruso, I. (2004). Surface EMG alterations induced by underwater recording. Journal of Electromyography and Kinesiology, 14(3), 325–31.[Online]. Available Accessed 4 Jan 2017.
  41. 41.
    Shafti, A., Ribas Manero, R. B., Borg, A. M., Althoefer, K., & Howard, M. J. (2016). Embroidered electromyography: A systematic design guide. IEEE Transactions on Neural Systems and Rehabilitation Engineering. [Online]. Available: Accessed 3 Mar 2017.
  42. 42.
    Ribas Manero, R. B., Grewal, J., Michael, B., Shafti, A., Althoefer, K., Ll, J., Ribas Fernandez, J. L., & Howard, M. J. (2016). Wearable embroidered muscle activity sensing device for the human upper leg. Accessed 3 Mar 2017.
  43. 43.
    Akazawa, J., & Okuno, R. (2013, July 3–7). A method for quantitative SEMG decomposition and MUAP classification during voluntary isovelocity elbow flexion. 35th annual international conference of the IEEE EMBS, pp. 6776–6779, Osaka, Japan.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jun Akazawa
    • 1
    Email author
  • Masaki Yoshida
    • 2
  • Takemasa Okamoto
    • 1
  • Kazuhiko Taniguchi
    • 1
  1. 1.Faculty of Judo Seifuku Therapy, School of Health Science and Medical CareMeiji University of Integrative MedicineKyotoJapan
  2. 2.Department of Physical Therapy, Faculty of Biomedical EngineeringOsaka Electro-Communication UniversityOsakaJapan

Personalised recommendations