Seamless Healthcare Monitoring pp 45-81 | Cite as
Electroencephalogram
- 5 Citations
- 2 Mentions
- 1.3k Downloads
Abstract
The electroencephalogram (EEG) is a widely used non-invasive method for monitoring the brain. It is based upon placing metal electrodes on the scalp which measure the small electrical potentials that arise outside of the head due to neuronal action within the brain. This chapter overviews the fundamental basis of the EEG, the typical signals that are produced and how they are collected and analysed. Significant attention is given to reviewing the state of the art in EEG collection in both electrode designs and instrumentation hardware. In particular, recent developments in ear-EEG and in conformal tattoo electrodes for very long-term monitoring are highlighted. The chapter concludes by overviewing the applications of EEG technology in medical and non-medical domains, demonstrating the emergence of “consumer neuroscience” applications as EEG devices become more available and more readily useable by non-specialist operators.
Keywords
Electroencephalography Electrodes Wearables Instrumentation Epilepsy Sleep disorders Consumer neuroscienceReferences
- 1.Berger, H. (1929). Uber das eletrenkephalogram des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.CrossRefGoogle Scholar
- 2.Buzsaki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407–420.CrossRefGoogle Scholar
- 3.Lopes da Silva, F. (2009). EEG: Origin and measurement. In C. Mulert & L. Lemieux (Eds.), EEG – fMRI (pp. 19–38). Heidelberg: Springer.CrossRefGoogle Scholar
- 4.Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology, 51(11), 1061–1071.CrossRefGoogle Scholar
- 5.Krauss, G. L., & Fisher, R. S. (2006). The Johns Hopkins atlas of digital EEG: An interactive training guide. Baltimore: Johns Hopkins University Press.Google Scholar
- 6.Lal, S. K., & Craig, A. (2002). Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology, 39(3), 313–321.CrossRefGoogle Scholar
- 7.Curio, G. (2000). Ain’t no rhythm fast enough: EEG bands beyond beta. Journal of Clinical Neurophysiology, 17(4), 339–340.CrossRefGoogle Scholar
- 8.Binnie, C. D., Rowan, A. J., & Gutter, T. (1982). A manual of electroencephalographic technology. Cambridge: Cambridge University Press.Google Scholar
- 9.Noachtar, S., Binnie, C., Ebersole, J., Mauguiere, F., Sakamoto, A., & Westmoreland, B. (1999). A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. In G. Deuschl & A. Eisen (Eds.), Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical physiology, Electroencephalography and clinical neurophysiology supplement (Vol. 52, 2nd ed., pp. 21–41). Amsterdam: Elsevier.Google Scholar
- 10.Celesia, G. G., & Chen, R.-C. (1976). Parameters of spikes in human epilepsy. Diseases of the Nervous System, 37(5), 277–281.Google Scholar
- 11.Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The sleep slow oscillation as a traveling wave. The Journal of Neuroscience, 24(31), 6862–6870.CrossRefGoogle Scholar
- 12.Muller-Putz, G. R., Scherer, R., Brauneis, C., & Pfurtscheller, G. (2005). Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components. Journal of Neural Engineering, 2(4), 123–130.CrossRefGoogle Scholar
- 13.Lins, O. G., & Picton, T. W. (1995). Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalography and Clinical Neurophysiology, 96(5), 420–432.CrossRefGoogle Scholar
- 14.Truccolo, W. A., Ding, M., Knuth, K. H., Nakamura, R., & Bressler, S. L. (2002). Trial-to-trial variability of cortical evoked responses: Implications for the analysis of functional connectivity. Clinical Neurophysiology, 113(2), 206–226.CrossRefGoogle Scholar
- 15.Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., & Graser, A. (2010). BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 107–116.CrossRefGoogle Scholar
- 16.Wang, Y., Gao, S., & Gao, X. (2005). Common spatial pattern method for channel selection in motor imagery based brain-computer interface. IEEE Engineering in Medicine and Biology Society, 5, 5392–5395.Google Scholar
- 17.Ebner, A., Sciarretta, G., Epstein, C. M., & Nuwer, M. (1999). EEG instrumentation. In G. Deuschl & A. Eisen (Eds.), Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical physiology, Electroencephalography and clinical neurophysiology supplement (Vol. 52, 2nd ed., pp. 7–10). Amsterdam: Elsevier.Google Scholar
- 18.Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the international federation. In G. Deuschl & A. Eisen (Eds.), Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical physiology, Electroencephalography and clinical neurophysiology supplement (Vol. 52, 2nd ed., pp. 3–6). Amsterdam: Elsevier.Google Scholar
- 19.Martz, G. U., Hucek, C., & Quigg, M. (2009). Sixty day continuous use of subdermal wire electrodes for EEG monitoring during treatment of status epilepticus. Neurocritical Care, 11(2), 223–227.CrossRefGoogle Scholar
- 20.Webster, J. G. (1984). Reducing motion artifacts and interference in biopotential recording. IEEE Transactions on Biomedical Engineering, 31(12), 823–826.CrossRefGoogle Scholar
- 21.Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J.-M., Hinrichs, H., Ikeda, A., Luccas, F. J. C., & Rappelsberger, P. (1999). IFCN standards for digital recording of clinical EEG. In G. Deuschl & A. Eisen (Eds.), Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical physiology, Electroencephalography and clinical neurophysiology supplement (Vol. 52, 2nd ed., pp. 11–14). Amsterdam: Elsevier.Google Scholar
- 22.Wilson, S. B., & Emerson, R. (2002). Spike detection: A review and comparison of algorithms. Clinical Neurophysiology, 113(12), 1873–1881.CrossRefGoogle Scholar
- 23.Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. Cambridge, MA: MIT Press.Google Scholar
- 24.Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
- 25.Gwin, J. T., Gramann, K., Makeig, S., & Ferris, D. P. (2011). Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage, 54(2), 1289–1296.CrossRefGoogle Scholar
- 26.Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Muller-Putz, G., & Scherer, R. (2012). Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage, 63(3), 1203–1211.CrossRefGoogle Scholar
- 27.Kohli, S., & Casson, A. J. (2015). Towards out-of-the-lab EEG in uncontrolled environments: Feasibility study of dry EEG recordings during exercise bike riding. IEEE Engineering in Medicine and Biology Society, 2015, 1025–1028.Google Scholar
- 28.Zink, R., Hunyadi, B., Van Huffel, S., & De Vos, M. (2016). Mobile EEG on the bike: Disentangling attentional and physical contributions to auditory attention tasks. Journal of Neural Engineering, 13(4), 046017.CrossRefGoogle Scholar
- 29.Mijovic, B., De Vos, M., Gligorijevic, I., Taelman, J., & Van Huffel, S. (2010). Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Transactions on Biomedical Engineering, 57(9), 2188–2196.CrossRefGoogle Scholar
- 30.Logesparan, L., Casson, A. J., & Rodriguez-Villegas, E. (2012). Optimal features for online seizure detection. Medical & Biological Engineering & Computing, 50(7), 659–669.CrossRefGoogle Scholar
- 31.Micheloyannis, S., Flitzanis, N., Papanikolaou, E., Bourkas, M., Terzakis, D., Arvanitis, S., & Stam, C. J. (1998). Usefulness of non-linear EEG analysis. Acta Neurologica Scandinavica, 97(1), 13–19.CrossRefGoogle Scholar
- 32.Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). San Diego: Academic.zbMATHGoogle Scholar
- 33.Jentzsch, I., & Sommer, W. (2001). Sequence-sensitive subcomponents of P300: Topographical analyses and dipole source localization. Psychophysiology, 38(4), 607–621.CrossRefGoogle Scholar
- 34.Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.CrossRefGoogle Scholar
- 35.Townsend, G., Graimann, B., & Pfurtscheller, G. (2004). Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 258–265.CrossRefGoogle Scholar
- 36.LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., & He, B. (2013). Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. Journal of Neural Engineering, 10(4), 046003.CrossRefGoogle Scholar
- 37.Gotman, J., & Gloor, P. (1976). Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalography and Clinical Neurophysiology, 41(5), 513–529.CrossRefGoogle Scholar
- 38.Pollock, V. E., Schneider, L. S., & Lyness, S. A. (1990). EEG amplitudes in healthy, late-middle-aged and elderly adults: Normality of the distributions and correlations with age. Electroencephalography and Clinical Neurophysiology, 75(4), 276–288.CrossRefGoogle Scholar
- 39.Casson, A. J., & Rodriguez-Villegas, E. (2011). Interfacing biology and circuits: Quantification and performance metrics. In K. Iniewski (Ed.), CMOS biomicrosystems: Where electronics meet biology (pp. 3–32). Hoboken: Wiley.Google Scholar
- 40.Christensen, J. C., Estepp, J. R., Wilson, G. F., & Russell, C. A. (2011). The effects of day-to-day variability of physiological data on operator functional state classification. NeuroImage, 59(1), 57–63.CrossRefGoogle Scholar
- 41.Tallgren, P., Vanhatalo, S., Kaila, K., & Voipio, J. (2005). Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clinical Neurophysiology, 116(4), 799–806.CrossRefGoogle Scholar
- 42.Neuman, M. R. (2000). Biopotential electrodes. In J. D. Bronzino (Ed.), The biomedical engineering handbook (2nd ed.). Boca Raton: CRC Press.Google Scholar
- 43.Huigen, E., Peper, A., & Grimbergen, C. A. (2002). Investigation into the origin of the noise of surface electrodes. Medical & Biological Engineering & Computing, 40(3), 332–338.CrossRefGoogle Scholar
- 44.Xu, J., Yazicioglu, R. F., Grundlehner, B., Harpe, P., Makinwa, K. A. A., & Van Hoof, C. (2011). A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Transactions on Biomedical Circuits and System, 5(6), 555–567.CrossRefGoogle Scholar
- 45.Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology, 112(3), 536–544.CrossRefGoogle Scholar
- 46.Krachunov, S., & Casson, A. J. (2016). 3D printed dry EEG electrodes. Sensors, 16(10), 1635.CrossRefGoogle Scholar
- 47.Taheri, B. A., Knight, R. T., & Smith, R. L. (1994). A dry electrode for EEG recording. Electroencephalography and Clinical Neurophysiology, 90(5), 376–383.CrossRefGoogle Scholar
- 48.Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Reviews in Biomedical Engineering, 3(1), 106–119.CrossRefGoogle Scholar
- 49.Casson, A. J. (2016, August). An introduction to next generation EEG electrodes. IEEE EMBC. Orlando: IEEE.Google Scholar
- 50.Lopez-Gordo, M. A., Sanchez-Morillo, D., & Pelayo Valle, F. (2014). Dry EEG electrodes. Sensors, 14(7), 12847–12870.CrossRefGoogle Scholar
- 51.Grass Technologies. http://www.grasstechnologies.com/. Accessed Jan 2017.
- 52.Debener, S., Emkes, R., De Vos, M., & Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 5(16743), 1–11.Google Scholar
- 53.Smith, P. E. M., & Wallace, S. J. (2001). Clinicians’ guide to epilepsy. London: Arnold.Google Scholar
- 54.Waterhouse, E. (2003). New horizons in ambulatory electroencephalography. IEEE Engineering in Medicine and Biology Magazine, 22(3), 74–80.CrossRefGoogle Scholar
- 55.Smith, S. J. M. (2005). EEG in the diagnosis, classification, and management of patients with epilepsy. Journal of Neurology, Neurosurgery, and Psychiatry, 76(2), ii2–ii7.Google Scholar
- 56.Ebersole, J. S., & Bridgers, S. L. (1985). Direct comparison of 3- and 8-channel ambulatory cassette EEG with intensive inpatient monitoring. Neurology, 35(6), 846–854.CrossRefGoogle Scholar
- 57.Casson, A. J., Yates, D. C., Smith, S. J. M., Duncan, J. S., & Rodriguez-Villegas, E. (2010). Wearable electroencephalography. IEEE Engineering in Medicine and Biology Magazine, 29(3), 44–56.CrossRefGoogle Scholar
- 58.Emotiv. https://www.emotiv.com/. Accessed Jan 2017.
- 59.Muse. http://www.choosemuse.com/. Accessed Jan 2017.
- 60.Neurosky. http://neurosky.com/. Accessed Jan 2017.
- 61.Rythm. https://rythm.co/. Accessed Jan 2017.
- 62.Kokoon. https://kokoon.io/. Accessed Jan 2017.
- 63.Badcock, N. A., Mousikou, P., Mahajan, Y., De Lissa, P., Thie, J., & McArthur, G. (2013). Validation of the Emotiv EPOC (R) EEG gaming system for measuring research quality auditory ERPs. PeerJ, 19(1), e38.CrossRefGoogle Scholar
- 64.OpenBCI. http://openbci.com/. Accessed Jan 2017.
- 65.Mihajlovic, V., Grundlehner, B., Vullers, R., & Penders, J. (2015). Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE Journal of Biomedical and Health Informatics, 19(1), 6–21.CrossRefGoogle Scholar
- 66.Lin, C. T., Liao, L. D., Liu, Y. H., Wang, I. J., Lin, B. S., & Chang, J. Y. (2011). Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Transactions on Biomedical Engineering, 58(5), 1200–1207.CrossRefGoogle Scholar
- 67.Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M. L., Rosenkranz, K., & Mandic, D. (2012). The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse, 3(6), 32–42.CrossRefGoogle Scholar
- 68.Kidmose, P., Looney, D., Ungstrup, M., Rank, M. L., & Mandic, D. P. (2013). A study of evoked potentials from ear-EEG. IEEE Transactions on Biomedical Engineering, 60(10), 2824–2830.CrossRefGoogle Scholar
- 69.Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F. G., Huang, Y., Coleman, T., & Rogers, J. A. (2011). Epidermal electronics. Science, 333(6044), 838–843.CrossRefGoogle Scholar
- 70.Norton, J. J., Lee, D. S., Lee, J. W., Lee, W., Kwon, O., Won, P., Jung, S. Y., Cheng, H., Jeong, J. W., Akce, A., Umunna, S., Na, I., Kwon, Y. H., Wang, X. Q., Liu, Z., Paik, U., Huang, Y., Bretl, T., Yeo, W. H., & Rogers, J. A. (2015). Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proceedings of the National Academy of Sciences of the United States of America, 112(13), 3920–3925.CrossRefGoogle Scholar
- 71.Batchelor, J. C., Yeates, S. G., & Casson, A. J. (2016). Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices. IEEE Engineering in Medicine and Biology Society, 2016, 3159–3162.Google Scholar
- 72.Sanchez-Romaguera, V., Ziai, M. A., Oyeka, D., Barbosa, S., Wheeler, J. S. R., Batchelor, J. C., Parker, E. A., & Yeates, S. G. (2013). Towards inkjet-printed low cost passive UHF RFID skin mounted tattoo paper tags based on silver nanoparticle inks. Journal of Materials Chemistry C, 1(39), 6395–6402.CrossRefGoogle Scholar
- 73.Ziai, M. A., & Batchelor, J. C. (2011). Temporary on-skin passive UHF RFID transfer tag. IEEE Transactions on Antennas and Propagation, 59(10), 3565–3571.CrossRefGoogle Scholar
- 74.Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. Westchester: American Academy of Sleep Medicine.Google Scholar
- 75.Neligan, A., & Sander, J. W. (2015). The incidence and prevalence of epilepsy. Available https://www.epilepsysociety.org.uk/. Accessed Jan 2017.
- 76.Browne, T. R., & Holmes, G. L. (2001). Epilepsy. The New England Journal of Medicine, 344(15), 1145–1151.CrossRefGoogle Scholar
- 77.Epilepsy society, diagnosing epilepsy. Available https://www.epilepsysociety.org.uk. Accessed Jan 2017.
- 78.National Institute for Clinical Excellence. (2004). NICE guidelines: The diagnosis and management of the epilepsies in adults and children in primary and secondary care. London: NICE.Google Scholar
- 79.Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: Public Health Service, U.S. Government Printing Office.Google Scholar
- 80.Carney, P. R., Berry, R. B., & Geyer, J. D. (Eds.). (2005). Clinical sleep disorders. Philadelphia: Lippincott Williams and Wilkins.Google Scholar
- 81.Colten, H. R., & Altevogt, B. M. (Eds.). (2006). Sleep disorders and sleep deprivation: An unmet public health problem. Washington, DC: National Academies Press.Google Scholar
- 82.Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211–1279.CrossRefGoogle Scholar
- 83.Ramos-Murguialday, A., Broetz, D., Rea, M., Laer, L., Yilmaz, O., Brasil, F. L., Liberati, G., Curado, M. R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L. G., & Birbaumer, N. (2013). Brain-machine-interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 74(1), 100–108.CrossRefGoogle Scholar
- 84.Neto, E., Allen, E. A., Aurlien, H., Nordby, H., & Eichele, T. (2015). EEG spectral features discriminate between Alzheimer’s and vascular dementia. Frontiers in Neurology, 6(25), 1–9.Google Scholar
- 85.Wolpaw, J. R., McFarland, D. J., Neat, G. W., & Forneris, C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78(3), 252–259.CrossRefGoogle Scholar
- 86.Zander, T. O., & Kothe, C. (2011). Towards passive brain computer interfaces: Applying brain computer interface technology to human machine systems in general. Journal of Neural Engineering, 8(2), 025005.CrossRefGoogle Scholar
- 87.Carlson, T., & Millan, J. R. (2013). Brain-controlled wheelchairs: A robotic architecture. IEEE Journal of Robotics and Automation, 20(1), 65–73.CrossRefGoogle Scholar
- 88.Kubler, A., Mushahwar, V. K., Hochberg, L. R., & Donoghue, J. P. (2004). BCI meeting 2005—Workshop on clinical issues and applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 131–134.CrossRefGoogle Scholar
- 89.Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.-P., & Gao, S. (2015). High-speed spelling with a noninvasive brain–computer interface. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 6058–6067.CrossRefGoogle Scholar
- 90.Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., & Edlinger, G. (2009). How many people are able to control a P300-based brain–computer interface (BCI)? Neuroscience Letters, 462(1), 94–98.CrossRefGoogle Scholar
- 91.Ekandem, J. I., Davis, T. A., Alvarez, I., James, M. T., & Gilbert, J. E. (2012). Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics, 55(5), 592–598.CrossRefGoogle Scholar
- 92.Dijksterhuis, C., De Waard, D., Brookhuis, K., Mulder, B., & De Jong, R. (2013). Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns. Frontiers in Neuroscience, 393(7), 149.Google Scholar
- 93.Casson, A. J. (2014). Artificial Neural Network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance. Frontiers in Neuroscience, 8(372), 1–10.Google Scholar
- 94.Wilson, G. F., & Russell, C. A. (2007). Performance enhancement in a UAV task using psychophysiological determined adaptive aiding. Human Factors, 49(6), 1005–1019.CrossRefGoogle Scholar
- 95.Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment. NeuroImage, 59(1), 36–47.CrossRefGoogle Scholar
- 96.Transparency market research. Available http://www.prweb.com/releases/2013/11/prweb11337791.htm. Accessed Jan 2017.
- 97.Surangsrirat, D., & Intarapanich, A. (2015, April). Analysis of the meditation brainwave from consumer EEG device. IEEE SoutheastCon, Fort Lauderdale.Google Scholar
- 98.Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is “neuromarketing”? A discussion and agenda for future research. International Journal of Psychophysiology, 63(2), 199–204.CrossRefGoogle Scholar
- 99.Koelstra, S., Muehl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2011). DEAP: A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31.CrossRefGoogle Scholar
- 100.Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., Foltynie, T., Limousin, P., Ashkan, K., FitzGerald, J., Green, A. L., Aziz, T. Z., & Brown, P. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74(3), 449–457.CrossRefGoogle Scholar
- 101.Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., Linde, D., Ullestad, D., Avestruz, A.-T., & Denison, T. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 410–421.CrossRefGoogle Scholar
- 102.Famm, K., Litt, B., Tracey, K. J., Boyden, E. S., & Slaoui, M. (2013). Drug discovery: A jump-start for electroceuticals. Nature, 496(7444), 159–161.CrossRefGoogle Scholar
- 103.Paulus, W. (2011). Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617.CrossRefGoogle Scholar
- 104.Kohli, S., & Casson, A. J. (2015). Removal of transcranial ac current stimulation artifact from simultaneous EEG recordings by superposition of moving averages. IEEE Engineering in Medicine and Biology Society, 2015, 3436–3439.Google Scholar
- 105.Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134.Google Scholar