Advertisement

Chemical Substances

  • Ying Fu
  • Anneng Yang
  • Feng YanEmail author
Chapter

Abstract

Seamless monitoring of chemical substances plays a key role in long-term health management, forensics, and security applications. Numerous wearable sensors have been developed to detect different kinds of chemical substances, such as gas, ethanol, urine, glucose, DNA, RNA, and so on. Gas emitted by human can be selectively detected by gas sensor and used as a reference in clinical diagnosis. Glucose sensor can detect the exact concentration of glucose in human blood and can also be used for controllable insulin delivery to reduce the pain to diabetic. The trace elements sensor can detect extremely low concentrations of elements in bio-sample that can be acted as an indicator for certain disease. Moreover, biomarker sensor provides an elusive goal for molecular diagnostics with high accuracy, which is an important tool in early preclinical diagnosis. Portable sensors can be used to detect the amount of ethanol in exhaled gas to confirm whether a driver gets drunk driving. The chemical substances are basically divided into four categories: gas/odor, glucose, trace elements, and biomarker. These sensors could be operated by electrochemical reaction, optical detector, and/or immune antigen-antibody reaction. Electrochemical sensors operate by reacting with the substances of interest and producing an electrical signal proportional to the concentration of analyte (such as hydrogen peroxide in body fluids). The purpose of an optical sensor is to measure a physical quantity of light (such as the amount of light that is scattered by analyte), depending on the type of sensor, and convert the readout to an integrated device to display. Immunosensors can be operated by immunochemical reaction in which antibody immobilized on the solid-state devices can couple with desired analyte (antigens) to produce a transducer signal that can be detected by electrochemical or optical device. Based on the high selectivity of antigen-antibody reaction, the immunosensors can be used for accurate and fast detection of certain biomarker.

Keywords

Sensors Gas and odor Glucose Bacteria Saliva Tears Sweat Urine Body fluid Excrement Biomarker Healthcare 

References

  1. 1.
    Pandey, S. K., & Kim, K.-H. (2011). Human body-odor components and their determination. TrAC Trends in Analytical Chemistry, 30(5), 784–796.CrossRefGoogle Scholar
  2. 2.
    Hart, R. (1980). Human body odor. Nexus, 1(1), 1.Google Scholar
  3. 3.
    Dormont, L., Bessiere, J. M., & Cohuet, A. (2013). Human skin volatiles: A review. Journal of Chemical Ecology, 39(5), 569–578.CrossRefGoogle Scholar
  4. 4.
    Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68(10), 2374–2376.CrossRefGoogle Scholar
  5. 5.
    Wu, C. H., Wang, W. H., Hong, C. C., & Hwang, K. C. (2016). A disposable breath sensing tube with on-tube single-nanowire sensor array for on-site detection of exhaled breath biomarkers. Lab on a Chip, 16(22), 4395–4405.CrossRefGoogle Scholar
  6. 6.
    Youssef, O., Sarhadi, V. K., Armengol, G., Piirila, P., Knuuttila, A., & Knuutila, S. (2016). Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes, Chromosomes and Cancer, 55(12), 905–914.CrossRefGoogle Scholar
  7. 7.
    Righettoni, M., Amann, A., & Pratsinis, S. E. (2015). Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 18(3), 163–171.CrossRefGoogle Scholar
  8. 8.
    Smith, S., Burden, H., Persad, R., Whittington, K., de Lacy Costello, B., Ratcliffe, N. M., & Probert, C. S. (2008). A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry. Journal of Breath Research, 2(3), 037022.CrossRefGoogle Scholar
  9. 9.
    Panneer Selvam, A., Muthukumar, S., Kamakoti, V., & Prasad, S. (2016). A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat. Scientific Reports, 6, 23111.CrossRefGoogle Scholar
  10. 10.
    Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654–3656.CrossRefGoogle Scholar
  11. 11.
    Staerz, A., Weimar, U., & Barsan, N. (2016). Understanding the potential of WO3 based sensors for breath analysis. Sensors, 16(11), 1815.CrossRefGoogle Scholar
  12. 12.
    Windmiller, J. R., & Wang, J. (2013). Wearable electrochemical sensors and biosensors: A review. Electroanalysis, 25(1), 29–46.CrossRefGoogle Scholar
  13. 13.
    Drobek, M., Kim, J. H., Bechelany, M., Vallicari, C., Julbe, A., & Kim, S. S. (2016). MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Applied Materials & Interfaces, 8(13), 8323–8328.CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Yao, S., Yang, Q., Sun, P., Gao, Y., Liang, X., Liu, F., & Lu, G. (2015). Highly sensitive and humidity-independent ethanol sensors based on In 2 O 3 nanoflower/SnO2 nanoparticle composites. RSC Advances, 5(64), 52252–52258.CrossRefGoogle Scholar
  15. 15.
    Righettoni, M., Tricoli, A., Gass, S., Schmid, A., Amann, A., & Pratsinis, S. E. (2012). Breath acetone monitoring by portable Si:WO3 gas sensors. Analytica Chimica Acta, 738, 69–75.CrossRefGoogle Scholar
  16. 16.
    Labidi, A., Gillet, E., Delamare, R., Maaref, M., & Aguir, K. (2006). Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sensors and Actuators B: Chemical, 120(1), 338–345.CrossRefGoogle Scholar
  17. 17.
    Righettoni, M., Tricoli, A., & Pratsinis, S. E. (2010). Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Analytical Chemistry, 82(9), 3581–3587.CrossRefGoogle Scholar
  18. 18.
    Maekawa, T., Tamaki, J., Miura, N., & Yamazoe, N. (1992). Gold-loaded tungsten oxide sensor for detection of Ammonia in air. Chemistry Letters, (4), 639–642.Google Scholar
  19. 19.
    Vallejos, S., Gracia, I., Figueras, E., & Cane, C. (2015). Nanoscale heterostructures based on Fe2O3@WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Applied Materials & Interfaces, 7(33), 18638–18649.CrossRefGoogle Scholar
  20. 20.
    Gouma, P., & Kalyanasundaram, K. (2008). A selective nanosensing probe for nitric oxide. Applied Physics Letters, 93(24), 244102.CrossRefGoogle Scholar
  21. 21.
    Rout, C. S., Hegde, M., & Rao, C. (2008). H2S sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 128(2), 488–493.CrossRefGoogle Scholar
  22. 22.
    Akamatsu, M., Mori, T., Okamoto, K., Komatsu, H., Kumagai, K., Shiratori, S., Yamamura, M., Nabeshima, T., Sakai, H., Abe, M., Hill, J. P., & Ariga, K. (2015). Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Applied Materials & Interfaces, 7(11), 6189–6194.CrossRefGoogle Scholar
  23. 23.
    Baldisserra, D., Franco, A., Maio, D., & Maltoni, D. (2005). Fake fingerprint detection by odor analysis. In D. Zhang & A. K. Jain (Eds.), Proceedings of international conference on advances in biometrics, ICB 2006, Hong Kong, China, January 5–7, 2006 (pp. 265–272). Berlin/Heidelberg: Springer.Google Scholar
  24. 24.
    Ping, W., Yi, T., Haibao, X., & Farong, S. (1997). A novel method for diabetes diagnosis based on electronic nose1. Biosensors and Bioelectronics, 12(9–10), 1031–1036.CrossRefGoogle Scholar
  25. 25.
    Capelli, L., Taverna, G., Bellini, A., Eusebio, L., Buffi, N., Lazzeri, M., Guazzoni, G., Bozzini, G., Seveso, M., Mandressi, A., Tidu, L., Grizzi, F., Sardella, P., Latorre, G., Hurle, R., Lughezzani, G., Casale, P., Meregali, S., & Sironi, S. (2016). Application and uses of electronic noses for clinical diagnosis on urine samples: A review. Sensors, 16(10), 1708.CrossRefGoogle Scholar
  26. 26.
    Bernabei, M., Pennazza, G., Santonico, M., Corsi, C., Roscioni, C., Paolesse, R., Di Natale, C., & D’Amico, A. (2008). A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sensors and Actuators B: Chemical, 131(1), 1–4.CrossRefGoogle Scholar
  27. 27.
    Berkhout, D., Benninga, M., van Stein, R., Brinkman, P., Niemarkt, H., de Boer, N., & de Meij, T. (2016). Effects of sampling conditions and environmental factors on fecal volatile organic compound analysis by an electronic nose device. Sensors, 16(11), 1967.CrossRefGoogle Scholar
  28. 28.
    Olson, A. L., & Pessin, J. E. (1996). Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annual Review of Nutrition, 16, 235–256.CrossRefGoogle Scholar
  29. 29.
    Viberti, G. C., Pickup, J. C., Jarrett, R. J., & Keen, H. (1979). Effect of control of blood-glucose on urinary-excretion of albumin and beta-2 microglobulin in insulin-dependent diabetes. The New England Journal of Medicine, 300(12), 638–641.CrossRefGoogle Scholar
  30. 30.
    Turner, R. C., Holman, R. R., Stratton, I. M., Cull, C. A., Matthews, D. R., Manley, S. E., Frighi, V., Wright, D., Neil, A., Kohner, E., McElroy, H., Fox, C., Hadden, D., & Grp, U. P. D. S. (1998). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 352(9131), 854–865.CrossRefGoogle Scholar
  31. 31.
    Harris, M. (1979). Classification and diagnosis of diabetes-mellitus and other categories of glucose-intolerance. Diabetes, 28(12), 1039–1057.CrossRefGoogle Scholar
  32. 32.
    Fang, H. J., Zhou, Y. H., Tian, Y. J., Du, H. Y., Sun, Y. X., & Zhong, L. Y. (2016). Effects of intensive glucose lowering in treatment of type 2 diabetes mellitus on cardiovascular outcomes: A meta-analysis of data from 58,160 patients in 13 randomized controlled trials. International Journal of Cardiology, 218, 50–58.CrossRefGoogle Scholar
  33. 33.
    Gerstein, H. C., Miller, M. E., Byington, R. P., Goff, D. C., Bigger, J. T., Buse, J. B., Cushman, W. C., Genuth, S., Ismail-Beigi, F., Grimm, R. H., Probstfield, J. L., Simons-Morton, D. G., Friedewald, W. T., & Diabet, A. C. C. R. (2008). Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine, 358(24), 2545–2559.CrossRefGoogle Scholar
  34. 34.
    Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: A review of current and emerging technology. Diabetic Medicine, 26(3), 197–210.CrossRefGoogle Scholar
  35. 35.
    Wang, H. C., & Lee, A. R. (2015). Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 23(2), 191–200.CrossRefGoogle Scholar
  36. 36.
    Dong, S. J. (1991). Recent aspects of amperometric glucose sensor. Analytical Sciences, 7, 1427–1430.CrossRefGoogle Scholar
  37. 37.
    Park, S., Boo, H., & Chung, T. D. (2006). Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556(1), 46–57.CrossRefGoogle Scholar
  38. 38.
    Toghill, K. E., & Compton, R. G. (2010). Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science, 5(9), 1246–1301.Google Scholar
  39. 39.
    Tian, K., Prestgard, M., & Tiwari, A. (2014). A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering. C, Materials for Biological Applications, 41, 100–118.CrossRefGoogle Scholar
  40. 40.
    Lv, Y. X., Jin, S., Wang, Y., Lun, Z. Q., & Xia, C. H. (2016). Recent advances in the application of nanomaterials in enzymatic glucose sensors. Journal of the Iranian Chemical Society, 13(10), 1767–1776.CrossRefGoogle Scholar
  41. 41.
    Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase - An overview. Biotechnology Advances, 27(4), 489–501.CrossRefGoogle Scholar
  42. 42.
    Zaidi, S. A., & Shin, J. H. (2016). Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 149, 30–42.CrossRefGoogle Scholar
  43. 43.
    Zhang, M., Liao, C. Z., Mak, C. H., You, P., Mak, C. L., & Yan, F. (2015). Highly sensitive glucose sensors based on enzyme-modified wholegraphene solution-gated transistors. Scientific Reports-UK, 5, 8311.Google Scholar
  44. 44.
    Yu, S. L., Li, D. C., Chong, H., Sun, C. Y., Yu, H. X., & Xu, K. X. (2014). In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomedical Optics Express, 5(1), 275–286.CrossRefGoogle Scholar
  45. 45.
    Uwadaira, Y., Adachi, N., Ikehata, A., & Kawano, S. (2011). Development of a non-invasive blood glucose sensor using short-wavelength near-infrared spectroscopy and its application to glycemic index determination. Journal of Japanese Society for Food Science, 58(3), 97–104.CrossRefGoogle Scholar
  46. 46.
    Yu, S. L., Li, D. C., Chong, H., Sun, C. Y., & Xu, K. X. (2013). Tunable mid-infrared laser spectroscopy based on fiber-optic sensor for glucose measurement. In Proceeding SPIE, California, USA, 8591, 85910K1–6.Google Scholar
  47. 47.
    Saxl, T., Khan, F., Matthews, D. R., Zhi, Z. L., Rolinski, O., Ameer-Beg, S., & Pickup, J. (2009). Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosensors and Bioelectronics, 24(11), 3229–3234.CrossRefGoogle Scholar
  48. 48.
    Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J., & Birch, D. J. S. (2005). Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20(12), 2555–2565.CrossRefGoogle Scholar
  49. 49.
    Demircik, F., Klonoff, D., Musholt, P. B., Ramljak, S., & Pfutzner, A. (2016). Successful performance of laboratory investigations with blood glucose meters employing a dynamic electrochemistry-based correction algorithm is dependent on careful sample handling. Diabetes Technology & Therapeutics, 18(10), 650–656.CrossRefGoogle Scholar
  50. 50.
    An, L. W., Zhao, L., Chen, Y. C., Chen, Y. Y., Jia, T. L., Wang, Y. X., Zhang, L. D., Wang, H. D., Jia, L. M., Wang, Y. Y., Li, W. T., Shi, X. R., Nie, P., Ding, X. J., Chen, J., He, Y. L., Feng, Y. H., Shi, J. L., Sui, X. T., Wang, Y. H., Song, S. N., Hsu, H. C., Lee, Y., Lu, J. M., Hu, Z. H., Ding, K., & Ji, L. N. (2016). What the intelligent blood glucose meter tells us: The implications of 0.67 million self monitoring of blood glucose data for SMBG behavior and blood glucose control of people with diabetes. Diabetes-Metabolish Research, 32(Supp 2), 77–78.Google Scholar
  51. 51.
    Mayzel, Y., Gal, A., Harman-Boehm, I., Drexler, A., Naidis, E., Goldstein, N., Horman, K., & Cohen, S. (2014). Acceptance of a truly non-invasive glucose monitoring device for home use. Diabetologia, 57, S404–S404.Google Scholar
  52. 52.
    Forst, T., Pfutzner, A., Forst, S., Larbig, M., Dewarrat, R., Schrepfer, T., & Caduff, A. (2004). Accuracy of the non-invasive glucose monitoring device Pendra compared to alternate site testing at the lower forearm during dynamic blood glucose changes in type 1 diabetic patients. Diabetes, 53, A102–A102.Google Scholar
  53. 53.
    Gal, A., Harman-Boehm, I., Drexler, A., Naidis, E., Mayzel, Y., Goldstein, N., Horman, K., Cohen, S., & Krasilshchikov, Y. (2015). Enabling frequent blood glucose monitoring at home using a truly non-invasive device. Diabetes Technol The, 17, A78–A78.Google Scholar
  54. 54.
    Amir, O., Kononenko, A., Gabis, E., & Karasik, A. (2006). Evaluation of a non-invasive continuous glucose monitoring device in a home use setting. Diabetologia, 49, 581–581.Google Scholar
  55. 55.
    Wrobel, M. S. (2016). Non-invasive blood glucose monitoring with Raman spectroscopy: Prospects for device miniaturization. IOP Conference Series: Materials Science and Engineering, 104, 12036–12045.Google Scholar
  56. 56.
    Tura, A., Maran, A., & Pacini, G. (2007). Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice, 77(1), 16–40.CrossRefGoogle Scholar
  57. 57.
    Buda, R. A., & Addi, M. M. (2014). A portable non-invasive blood glucose monitoring device. Ieee Conference on Biomedical Engineering and Sciences (Iecbes) 2014, pp. 964–969.Google Scholar
  58. 58.
    Andrews, J. T., Solanki, J., Choudhary, O. P., Chouksey, S., Malvia, N., Chaturvedi, P., & Sen, P. (2012). Towards a wearable non-invasive blood glucose monitoring device. Journal of Physics Conference Series, 365, 12004–12009.Google Scholar
  59. 59.
    Tsalikian, E., Beck, R. W., Tamborlane, W. V., Chase, P., Buckingham, B. A., Weinzimer, S. A., Mauras, N., Ruedy, K. J., Kollman, C., Xing, D. Y., Fiallo-Scharer, R., Fisher, J. H., Tsalikian, E., Tansey, M. J., Larson, L. F., Wysocki, T., Gagnon, K. M., Todd, P., Wilson, D. M., Block, J. M., Kunselman, E. L., Tamborlane, W. V., Doyle, E. A., Moke, P. S., Labastie, L. M., Becker, D. M., Cox, C., Ryan, C. M., White, N. H., White, P. C., Steffes, M. W., Bucksa, J. M., Nowicki, M. L., Grave, G. D., Linder, B., Winer, K. K., & Grp, D. S. (2004). Accuracy of the GlucoWatch G2 biographer and the continuous glucose monitoring system during hypoglycemia – Experience of the diabetes research in children network. Diabetes Care, 27(3), 722–726.CrossRefGoogle Scholar
  60. 60.
    Davis, T., Tamada, J., Lee, J., & Eastman, R. (2003). Effect of topical corticosteroid pre-treatment on skin irritation and performance of the GlucoWatch (R) G2 (TM) biographer. Diabetes, 52, A91–A92.Google Scholar
  61. 61.
    Hathout, E., Patel, N., Southern, C., Hill, J., Anderson, R., Sharkey, J., Hadley-Scofield, M., Tran, L., Leptien, A., Lopatin, M., Wang, B., Mace, J., & Eastman, R. (2005). Home use of the GlucoWatch G2 biographer in children with diabetes. Pediatrics, 115(3), 662–666.CrossRefGoogle Scholar
  62. 62.
    Gal, A., Mayzel, Y., Harman-Boehm, I., Naidis, E., & Trieman, L. (2011). Evaluation of performances and efficacy of GlucoTrack (R), a truly non-invasive glucose monitor for home and home-alike use. Diabetologia, 54, S411–S412.Google Scholar
  63. 63.
    Gal, A., Harman-Boehm, I., Naidis, E., Mayzel, Y., & Goldstein, N. (2013). Validity of GlucoTrack (R), a non-invasive glucose monitor, for a variety of people with diabetes. Diabetic Medicine, 30, 69–69.Google Scholar
  64. 64.
    Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363–371.CrossRefGoogle Scholar
  65. 65.
    Heise, H. M., Marbach, R., Koschinsky, T., & Gries, F. A. (1994). Noninvasive blood-glucose sensors based on near-Infrared spectroscopy. Artificial Organs, 18(6), 439–447.CrossRefGoogle Scholar
  66. 66.
    Robinson, M. R., Eaton, R. P., Ward, K. J., & Haaland, D. M. (1990). Whole-blood glucose determination by infrared-spectroscopy for development of a non-invasive glucose sensor. Clinical Research, 38(1), A217–A217.Google Scholar
  67. 67.
    Kutter, D. (2000). The urine test strip of the future. Clinica Chimica Acta, 297(1–2), 297–304.CrossRefGoogle Scholar
  68. 68.
    Son, J. E. (1994). Patient’s stool and urine disposing apparatus. Google patents, patent no. 5, 342, 583.Google Scholar
  69. 69.
    Turner, A. (2013). Biosensors: Then and now. Trends in Biotechnology, 31(3), 119–120.CrossRefGoogle Scholar
  70. 70.
    Yan, F., Mok, S. M., Yu, J., Chan, H. L., & Yang, M. (2009). Label-free DNA sensor based on organic thin film transistors. Biosensors and Bioelectronics, 24(5), 1241–1245.CrossRefGoogle Scholar
  71. 71.
    Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.CrossRefGoogle Scholar
  72. 72.
    Yao, C., Li, Q., Guo, J., Yan, F., & Hsing, I. M. (2015). Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Advanced Healthcare Materials, 4(4), 528–533.CrossRefGoogle Scholar
  73. 73.
    Kim, J., Valdes-Ramirez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramirez, J., Mercier, P., & Wang, J. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. The Analyst, 139(7), 1632–1636.CrossRefGoogle Scholar
  74. 74.
    Schneyer, L. H., Young, J. A., & Schneyer, C. A. (1972). Salivary secretion of electrolytes. Physiological Reviews, 52(3), 720–777.Google Scholar
  75. 75.
    Chicharro, J. L., Lucia, A., Perez, M., Vaquero, A. F., & Urena, R. (1998). Saliva composition and exercise. Sports Medicine (Auckland, N.Z.), 26(1), 17–27.CrossRefGoogle Scholar
  76. 76.
    Esashi, M., & Matsuo, T. (1978). Integrated micro multi ion sensor using field effect of semiconductor. IEEE Transactions on Bio-medical Engineering, 25(2), 184–192.CrossRefGoogle Scholar
  77. 77.
    Iida, T., Okamura, S., Kakizaki, S., Sagawa, T., Zhang, Y., Kobayashi, R., Masuo, T., & Mori, M. (2013). Carbon dioxide insufflation reduces the discomfort due to colonoscopy as objectively analyzed by salivary stress markers. Acta Gastro-Enterologica Belgica, 76(2), 219–224.Google Scholar
  78. 78.
    Graf, H., & Muhlemann, H. R. (1966). Telemetry of plaque pH from interdental area. Helvetica Odontologica Acta, 10(2), 94–101.Google Scholar
  79. 79.
    Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdes-Ramirez, G., Paixao, T. R., Mercier, P. P., & Wang, J. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 74, 1061–1068.CrossRefGoogle Scholar
  80. 80.
    Sakamoto, M., Umeda, M., Ishikawa, I., & Benno, Y. (2000). Comparison of the oral bacterial flora in saliva from a healthy subject and two periodontitis patients by sequence analysis of 16S rDNA libraries. Microbiology and Immunology, 44(8), 643–652.CrossRefGoogle Scholar
  81. 81.
    Liao, C., Mak, C., Zhang, M., Chan, H. L., & Yan, F. (2015). Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Advanced Materials, 27(4), 676–681.CrossRefGoogle Scholar
  82. 82.
    Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N., Omenetto, F. G., & McAlpine, M. C. (2012). Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 3, 763.CrossRefGoogle Scholar
  83. 83.
    Nakatsukasa, M., Sotozono, C., Shimbo, K., Ono, N., Miyano, H., Okano, A., Hamuro, J., & Kinoshita, S. (2011). Amino acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. American Journal of Ophthalmology, 151(5), 799–808.e1.CrossRefGoogle Scholar
  84. 84.
    Choy, C. K. M., Cho, P., Chung, W. Y., & Benzie, I. F. F. (2001). Water-soluble antioxidants in human tears: Effect of the collection method. Investigative Ophthalmology and Visual Science, 42(13), 3130–3134.Google Scholar
  85. 85.
    van Haeringen, N. J., & Glasius, E. (1977). Collection method dependent concentrations of some metabolites in human tear fluid, with special reference to glucose in hyperglycaemic conditions. Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Albrecht von Graefe’s archive for clinical and experimental ophthalmology, 202(1), 1–7.CrossRefGoogle Scholar
  86. 86.
    Pankratov, D., González-Arribas, E., Blum, Z., & Shleev, S. (2016). Tear based bioelectronics. Electroanalysis, 28(6), 1250–1266.CrossRefGoogle Scholar
  87. 87.
    Yao, H., Liao, Y., Lingley, A. R., Afanasiev, A., Lähdesmäki, I., Otis, B. P., & Parviz, B. A. (2012). A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. Journal of Micromechanics and Microengineering, 22(7), 075007.CrossRefGoogle Scholar
  88. 88.
    Otis, B., & Parviz, B. Introducing our smart contact lense project. https://blog.google/topics/alphabet/introducing-our-smart-contact-lens/
  89. 89.
    Iguchi, S., Kudo, H., Saito, T., Ogawa, M., Saito, H., Otsuka, K., Funakubo, A., & Mitsubayashi, K. (2007). A flexible and wearable biosensor for tear glucose measurement. Biomedical Microdevices, 9(4), 603–609.CrossRefGoogle Scholar
  90. 90.
    Kagie, A., Bishop, D. K., Burdick, J., La Belle, J. T., Dymond, R., Felder, R., & Wang, J. (2008). Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanalysis, 20(14), 1610–1614.CrossRefGoogle Scholar
  91. 91.
    Chu, M., Shirai, T., Takahashi, D., Arakawa, T., Kudo, H., Sano, K., Sawada, S.-i., Yano, K., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., & Mitsubayashi, K. (2011). Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents. Biomedical Microdevices, 13(4), 603–611.CrossRefGoogle Scholar
  92. 92.
    Falk, M., Andoralov, V., Silow, M., Toscano, M. D., & Shleev, S. (2013). Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Analytical Chemistry, 85(13), 6342–6348.CrossRefGoogle Scholar
  93. 93.
    Thomas, N., Lähdesmäki, I., & Parviz, B. A. (2012). A contact lens with an integrated lactate sensor. Sensors and Actuators B: Chemical, 162(1), 128–134.CrossRefGoogle Scholar
  94. 94.
    Mitsubayashi, K., Suzuki, M., Tamiya, E., & Karube, I. (1994). Analysis of metabolites in sweat as a measure of physical condition. Analytica Chimica Acta, 289(1), 27–34.CrossRefGoogle Scholar
  95. 95.
    Schazmann, B., Morris, D., Slater, C., Beirne, S., Fay, C., Reuveny, R., Moyna, N., & Diamond, D. (2010). A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Analytical Methods, 2(4), 342–348.CrossRefGoogle Scholar
  96. 96.
    Weber, J., Kumar, A., Kumar, A., & Bhansali, S. (2006). Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sensors and Actuators B: Chemical, 117(1), 308–313.CrossRefGoogle Scholar
  97. 97.
    Brauker, J. H., Tapsak, M. A., Saint, S. T., Kamath, A. U., Neale, P. V., Simpson, P. C., Mensinger, M. R., & Markovic, D. Integrated delivery device for continuous glucose sensor. Google Patents: 2009.Google Scholar
  98. 98.
    Heaney, R. P. (1992). Calcium in the prevention and treatment of osteoporosis. Journal of Internal Medicine,Nebraska, USA, 231(2), 169–180.Google Scholar
  99. 99.
    Guinovart, T., Parrilla, M., Crespo, G. A., Rius, F. X., & Andrade, F. J. (2013). Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. The Analyst, 138(18), 5208–5215.CrossRefGoogle Scholar
  100. 100.
    Wujcik, E. K., Blasdel, N. J., Trowbridge, D., & Monty, C. N. (2013). Ion sensor for the quantification of sodium in sweat samples. IEEE Sensors Journal, 13(9), 3430–3436.CrossRefGoogle Scholar
  101. 101.
    Windmiller, J. R., Bandodkar, A. J., Valdes-Ramirez, G., Parkhomovsky, S., Martinez, A. G., & Wang, J. (2012). Electrochemical sensing based on printable temporary transfer tattoos. Chemical Communications, 48(54), 6794–6796.CrossRefGoogle Scholar
  102. 102.
    Jia, W., Bandodkar, A. J., Valdés-Ramírez, G., Windmiller, J. R., Yang, Z., Ramírez, J., Chan, G., & Wang, J. (2013). Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical Chemistry, 85(14), 6553–6560.CrossRefGoogle Scholar
  103. 103.
    Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., Andrade, F. J., Schöning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRefGoogle Scholar
  104. 104.
    Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827–1879.CrossRefGoogle Scholar
  105. 105.
    Kanbara, A., Miura, Y., Hyogo, H., Chayama, K., & Seyama, I. (2012). Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutrition Journal, 11, 39.CrossRefGoogle Scholar
  106. 106.
    Miller, E. (1995). Long-term monitoring of the diabetic dog and cat. Veterinary Clinics of North America: Small Animal Practice, 25(3), 571–584.CrossRefGoogle Scholar
  107. 107.
    Pezzaniti, J. L., Jeng, T.-W., McDowell, L., & Oosta, G. M. (2001). Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clinical Biochemistry, 34(3), 239–246.CrossRefGoogle Scholar
  108. 108.
    Sheerin, N. S. (2011). Urinary tract infection. Medicine, 39(7), 384–389.CrossRefGoogle Scholar
  109. 109.
    Rosenstock, J., & Ferrannini, E. (2015). Euglycemic diabetic ketoacidosis: A predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care, 38(9), 1638–1642.CrossRefGoogle Scholar
  110. 110.
    Todenhöfer, T., Hennenlotter, J., Tews, V., Gakis, G., Aufderklamm, S., Kuehs, U., Stenzl, A., & Schwentner, C. (2013). Impact of different grades of microscopic hematuria on the performance of urine-based markers for the detection of urothelial carcinoma. Urologic Oncology: Seminars and Original Investigations, 31(7), 1148–1154.CrossRefGoogle Scholar
  111. 111.
    Mava, Y., Ambe, J. P., Bello, M., Watila, I., & Pius, S. (2011). Evaluation of the nitrite test in screening for urinary tract infection in febrile children with sickle cell anaemia in Maiduguri- Nigeria. Nigerian Medical Journal: Journal of the Nigeria Medical Association, 52(1), 45–48.Google Scholar
  112. 112.
    Comer, J. P. (1956). Semiquantitative specific test paper for glucose in urine. Analytical Chemistry, 28(11), 1748–1750.CrossRefGoogle Scholar
  113. 113.
    Liang, C., Peng, H., Bao, X., Nie, L., & Yao, S. (1999). Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine. The Analyst, 124(12), 1781–1785.CrossRefGoogle Scholar
  114. 114.
    Kodama, H., Yoshimura, H., & Nagata, Y. (2009). An ultrasonic urine sensor. Gerontechnology, 8(1), 35.CrossRefGoogle Scholar
  115. 115.
    Zhang, W., Bauer, M., Croner, R. S., Pelz, J. O. W., Lodygin, D., Hermeking, H., Stürzl, M., Hohenberger, W., & Matzel, K. E. (2007). DNA stool test for colorectal cancer: Hypermethylation of the secreted frizzled-related protein-1 gene. Diseases of the Colon & Rectum, 50(10), 1618–1627.CrossRefGoogle Scholar
  116. 116.
    Wu, I. C., Ke, H.-L., Lo, Y.-C., Yang, Y.-C., Chuang, C.-H., Yu, F.-J., Lee, Y.-C., Jan, C.-M., Wang, W.-M., & Wu, D.-C. (2003). Evaluation of a newly developed office-based stool test for detecting Helicobacter pylori: An extensive pilot study. Hepato-Gastroenterology, 50(54), 1761–1765.Google Scholar
  117. 117.
    Johnson, W. C. (2006). The biomarker guide, vol 1, & 2. Geoarchaeology, 21(5), 515–517.CrossRefGoogle Scholar
  118. 118.
    Maisel, A. (2011). Biomonitoring and biomarker-guided therapy the next step in heart failure and biomarker research. Journal of the American College of Cardiology, 58(18), 1890–1892.CrossRefGoogle Scholar
  119. 119.
    Good, D. W., Stewart, G. D., Hammer, S., Scanlan, P., Shu, W., Phipps, S., Reuben, R., & McNeill, A. S. (2014). Elasticity as a biomarker for prostate cancer: A systematic review. BJU International, 113(4), 523–534.CrossRefGoogle Scholar
  120. 120.
    Engwegen, J. Y. M. N., Helgason, H. H., Cats, A., Bonfrer, J. M. G., Schellens, J. H. M., & Beijnen, J. H. (2005). Proteomics in patients with colorectal cancer: Detection of biomarker proteins discriminating patients from healthy controls. British Journal of Clinical Pharmacology, 59(1), 128–128.Google Scholar
  121. 121.
    Liang, S. F., Xu, Z. Z., Xu, X. J., Zhao, X., Huang, C. H., & Wei, Y. Q. (2012). Quantitative proteomics for cancer biomarker discovery. Combinatorial Chemistry and High Throughput Screening, 15(3), 221–231.CrossRefGoogle Scholar
  122. 122.
    Hernandez, J., & Thompson, I. M. (2004). Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer, 101(5), 894–904.CrossRefGoogle Scholar
  123. 123.
    Tawa, K., Kondo, F., Sasakawa, C., Nagae, K., Nakamura, Y., Nozaki, A., & Kaya, T. (2015). Sensitive detection of a tumor marker, alpha-fetoprotein, with a sandwich assay on a plasmonic chip. Analytical Chemistry, 87(7), 3871–3876.CrossRefGoogle Scholar
  124. 124.
    Yu, X. P., Li, Y. N., Wu, J., & Ju, H. X. (2014). Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Analytical Chemistry, 86(9), 4501–4507.CrossRefGoogle Scholar
  125. 125.
    Kristiansen, S., Jorgensen, L. M., Guldberg, P., & Soletormos, G. (2013). Aberrantly methylated DNA as a biomarker in breast cancer. The International Journal of Biological Markers, 28(2), 141–150.CrossRefGoogle Scholar
  126. 126.
    Jin, C., Qiu, L. P., Li, J., Fu, T., Zhang, X. B., & Tan, W. H. (2016). Cancer biomarker discovery using DNA aptamers. The Analyst, 141(2), 461–466.CrossRefGoogle Scholar
  127. 127.
    Uhl, B., Gevensleben, H., Tolkach, Y., Sailer, V., Majores, M., Jung, M., Meller, S., Stein, J., Ellinger, J., Dietrich, D., & Kristiansen, G. (2017). PITX2 DNA methylation as biomarker for individualized risk assessment of prostate cancer in core biopsies. The Journal of Molecular Diagnostics, 19(1), 107–114.CrossRefGoogle Scholar
  128. 128.
    Li, C. Z., Karadeniz, H., Canavar, E., & Erdem, A. (2012). Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochimica Acta, 82, 137–142.CrossRefGoogle Scholar
  129. 129.
    Qiu, L. P., Qiu, L., Zhou, H., Wu, Z. S., Shen, G. L., & Yu, R. Q. (2014). Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism. New Journal of Chemistry, 38(10), 4711–4715.CrossRefGoogle Scholar
  130. 130.
    Daggumati, P., Matharu, Z., Wang, L., & Seker, E. (2015). Biofouling-resilient nanoporous gold electrodes for DNA sensing. Analytical Chemistry, 87(17), 8618–8622.CrossRefGoogle Scholar
  131. 131.
    Das, J., Ivanov, I., Sargent, E. H., & Kelley, S. O. (2016). DNA clutch probes for circulating tumor DNA analysis. Journal of the American Chemical Society, 138(34), 11009–11016.CrossRefGoogle Scholar
  132. 132.
    Li, C. X., Wang, H. Y., Shen, J., & Tang, B. (2015). Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Analytical Chemistry, 87(8), 4283–4291.CrossRefGoogle Scholar
  133. 133.
    Li, S. C., Yang, X. R., Yang, J. M., Zhen, J. S., & Zhang, D. C. (2016). Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clinical and Experimental Medicine, 16(1), 29–35.CrossRefGoogle Scholar
  134. 134.
    Kilic, T., Erdem, A., Erac, Y., Seydibeyoglu, M. O., Okur, S., & Ozsoz, M. (2015). Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis, 27(2), 317–326.CrossRefGoogle Scholar
  135. 135.
    Brennan, E., Moriarty, R., Keyes, T. E., & Forster, R. J. (2016). Detection and live-cell imaging of a micro-RNA associated with the cancer neuroblastoma. Bioconjugate Chemistry, 27(10), 2332–2336.CrossRefGoogle Scholar
  136. 136.
    Joshi, G. K., Deitz-McElyea, S., Liyanage, T., Lawrence, K., Mali, S., Sardar, R., & Korc, M. (2015). Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano, 9(11), 11075–11089.CrossRefGoogle Scholar
  137. 137.
    Liu, Q., Yeh, Y. C., Rana, S., Jiang, Y., Guo, L., & Rotello, V. M. (2013). Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays. Cancer Letters, 334(2), 196–201.CrossRefGoogle Scholar
  138. 138.
    Tang, X., & Saif, T. (2012). Loss of cell adhesion in colon cancer cells during in vitro metastasis measured by bio-mems force sensor. Proceedings of the Asme Summer Bioengineering Conference, Pts a and B 2012, pp. 251–252.Google Scholar
  139. 139.
    Shi, J., Li, Y., Liang, S. Z., Zeng, J. Y., Liu, G. F., Mu, F., Li, H. B., Chen, J. B., Liu, T. J., & Niu, L. Z. (2016). Analysis of circulating tumor cells in colorectal cancer liver metastasis patients before and after cryosurgery. Cancer Biology & Therapy, 17(9), 935–942.CrossRefGoogle Scholar
  140. 140.
    Cheng, S., Chen, J. F., Lu, Y. T., Chung, L. W. K., Tseng, H. R., & Posadas, E. M. (2016). Applications of circulating tumor cells for prostate cancer. Asian Journal of Urology, 3(4), 254–259.CrossRefGoogle Scholar
  141. 141.
    McInness, L., Blick, T., Le, V. P. A. L., Tachtsidis, A., Dissanayake, V., Huang, D., Berchtenbreiter, K., Sundararajan, V., Choong, P. F., Di Bella, C., Henderson, M., Saunders, C., Dobrovic, A., Dowling, A., & Thompson, E. (2016). Circulating and disseminated tumor cells in breast cancer. Asia-Pacific Journal of Clinical Oncology, 12, 77–77.CrossRefGoogle Scholar
  142. 142.
    Parajuli, R., Ao, Z., Shah, S. H., Sengul, T. K., Lippman, M. E., Datar, R., & El-Ashry, D. (2016). Circulating cells from the tumor microenvironment as liquid biopsy biomarkers alongside circulating tumor cells in metastatic breast cancer. Cancer Research, 76, P2-02-10.Google Scholar
  143. 143.
    Busetto, G. M., Giovannone, R., Antonini, G., Gazzaniga, P., Gentile, V., & De Berardinis, E. (2016). Circulating tumor cells (Ctc) identification in bladder cancer using epcam (Epithelial Cell Adhesion Molecule): Comparison between manual and automated system of isolation and future prospective. Journal Urology, 195(4), E611–E611.CrossRefGoogle Scholar
  144. 144.
    Terzi, E., Simsek, E., Carhan, A., Dilek, Y., Taspinar, R., Devecioglu, B., & Guler, O. O. (2016). Circulating tumor cells (CTCs) in peripheral blood: Liquid biopsy for cancer patients. The FEBS Journal, 283, 301–301.Google Scholar
  145. 145.
    Zheng, F., Cheng, Y., Wang, J., Lu, J., Zhang, B., Zhao, Y., & Gu, Z. (2014). Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Advanced Materials, 26(43), 7333–7338.CrossRefGoogle Scholar
  146. 146.
    Maltez-da Costa, M., de la Escosura-Muniz, A., Nogues, C., Barrios, L., Ibanez, E., & Merkoci, A. (2012). Simple monitoring of cancer cells using nanoparticles. Nano Letters, 12(8), 4164–4171.CrossRefGoogle Scholar
  147. 147.
    Wan, Y., Zhou, Y. G., Poudineh, M., Safaei, T. S., Mohamadi, R. M., Sargent, E. H., & Kelley, S. O. (2014). Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angewandte Chemie International Edition, 53(48), 13145–13149.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations