Seamless Healthcare Monitoring pp 335-365 | Cite as
Chemical Substances
- 1 Citations
- 1.1k Downloads
Abstract
Seamless monitoring of chemical substances plays a key role in long-term health management, forensics, and security applications. Numerous wearable sensors have been developed to detect different kinds of chemical substances, such as gas, ethanol, urine, glucose, DNA, RNA, and so on. Gas emitted by human can be selectively detected by gas sensor and used as a reference in clinical diagnosis. Glucose sensor can detect the exact concentration of glucose in human blood and can also be used for controllable insulin delivery to reduce the pain to diabetic. The trace elements sensor can detect extremely low concentrations of elements in bio-sample that can be acted as an indicator for certain disease. Moreover, biomarker sensor provides an elusive goal for molecular diagnostics with high accuracy, which is an important tool in early preclinical diagnosis. Portable sensors can be used to detect the amount of ethanol in exhaled gas to confirm whether a driver gets drunk driving. The chemical substances are basically divided into four categories: gas/odor, glucose, trace elements, and biomarker. These sensors could be operated by electrochemical reaction, optical detector, and/or immune antigen-antibody reaction. Electrochemical sensors operate by reacting with the substances of interest and producing an electrical signal proportional to the concentration of analyte (such as hydrogen peroxide in body fluids). The purpose of an optical sensor is to measure a physical quantity of light (such as the amount of light that is scattered by analyte), depending on the type of sensor, and convert the readout to an integrated device to display. Immunosensors can be operated by immunochemical reaction in which antibody immobilized on the solid-state devices can couple with desired analyte (antigens) to produce a transducer signal that can be detected by electrochemical or optical device. Based on the high selectivity of antigen-antibody reaction, the immunosensors can be used for accurate and fast detection of certain biomarker.
Keywords
Sensors Gas and odor Glucose Bacteria Saliva Tears Sweat Urine Body fluid Excrement Biomarker HealthcareReferences
- 1.Pandey, S. K., & Kim, K.-H. (2011). Human body-odor components and their determination. TrAC Trends in Analytical Chemistry, 30(5), 784–796.CrossRefGoogle Scholar
- 2.Hart, R. (1980). Human body odor. Nexus, 1(1), 1.Google Scholar
- 3.Dormont, L., Bessiere, J. M., & Cohuet, A. (2013). Human skin volatiles: A review. Journal of Chemical Ecology, 39(5), 569–578.CrossRefGoogle Scholar
- 4.Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68(10), 2374–2376.CrossRefGoogle Scholar
- 5.Wu, C. H., Wang, W. H., Hong, C. C., & Hwang, K. C. (2016). A disposable breath sensing tube with on-tube single-nanowire sensor array for on-site detection of exhaled breath biomarkers. Lab on a Chip, 16(22), 4395–4405.CrossRefGoogle Scholar
- 6.Youssef, O., Sarhadi, V. K., Armengol, G., Piirila, P., Knuuttila, A., & Knuutila, S. (2016). Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes, Chromosomes and Cancer, 55(12), 905–914.CrossRefGoogle Scholar
- 7.Righettoni, M., Amann, A., & Pratsinis, S. E. (2015). Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 18(3), 163–171.CrossRefGoogle Scholar
- 8.Smith, S., Burden, H., Persad, R., Whittington, K., de Lacy Costello, B., Ratcliffe, N. M., & Probert, C. S. (2008). A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry. Journal of Breath Research, 2(3), 037022.CrossRefGoogle Scholar
- 9.Panneer Selvam, A., Muthukumar, S., Kamakoti, V., & Prasad, S. (2016). A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat. Scientific Reports, 6, 23111.CrossRefGoogle Scholar
- 10.Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654–3656.CrossRefGoogle Scholar
- 11.Staerz, A., Weimar, U., & Barsan, N. (2016). Understanding the potential of WO3 based sensors for breath analysis. Sensors, 16(11), 1815.CrossRefGoogle Scholar
- 12.Windmiller, J. R., & Wang, J. (2013). Wearable electrochemical sensors and biosensors: A review. Electroanalysis, 25(1), 29–46.CrossRefGoogle Scholar
- 13.Drobek, M., Kim, J. H., Bechelany, M., Vallicari, C., Julbe, A., & Kim, S. S. (2016). MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Applied Materials & Interfaces, 8(13), 8323–8328.CrossRefGoogle Scholar
- 14.Liu, Y., Yao, S., Yang, Q., Sun, P., Gao, Y., Liang, X., Liu, F., & Lu, G. (2015). Highly sensitive and humidity-independent ethanol sensors based on In 2 O 3 nanoflower/SnO2 nanoparticle composites. RSC Advances, 5(64), 52252–52258.CrossRefGoogle Scholar
- 15.Righettoni, M., Tricoli, A., Gass, S., Schmid, A., Amann, A., & Pratsinis, S. E. (2012). Breath acetone monitoring by portable Si:WO3 gas sensors. Analytica Chimica Acta, 738, 69–75.CrossRefGoogle Scholar
- 16.Labidi, A., Gillet, E., Delamare, R., Maaref, M., & Aguir, K. (2006). Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sensors and Actuators B: Chemical, 120(1), 338–345.CrossRefGoogle Scholar
- 17.Righettoni, M., Tricoli, A., & Pratsinis, S. E. (2010). Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Analytical Chemistry, 82(9), 3581–3587.CrossRefGoogle Scholar
- 18.Maekawa, T., Tamaki, J., Miura, N., & Yamazoe, N. (1992). Gold-loaded tungsten oxide sensor for detection of Ammonia in air. Chemistry Letters, (4), 639–642.Google Scholar
- 19.Vallejos, S., Gracia, I., Figueras, E., & Cane, C. (2015). Nanoscale heterostructures based on Fe2O3@WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Applied Materials & Interfaces, 7(33), 18638–18649.CrossRefGoogle Scholar
- 20.Gouma, P., & Kalyanasundaram, K. (2008). A selective nanosensing probe for nitric oxide. Applied Physics Letters, 93(24), 244102.CrossRefGoogle Scholar
- 21.Rout, C. S., Hegde, M., & Rao, C. (2008). H2S sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 128(2), 488–493.CrossRefGoogle Scholar
- 22.Akamatsu, M., Mori, T., Okamoto, K., Komatsu, H., Kumagai, K., Shiratori, S., Yamamura, M., Nabeshima, T., Sakai, H., Abe, M., Hill, J. P., & Ariga, K. (2015). Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Applied Materials & Interfaces, 7(11), 6189–6194.CrossRefGoogle Scholar
- 23.Baldisserra, D., Franco, A., Maio, D., & Maltoni, D. (2005). Fake fingerprint detection by odor analysis. In D. Zhang & A. K. Jain (Eds.), Proceedings of international conference on advances in biometrics, ICB 2006, Hong Kong, China, January 5–7, 2006 (pp. 265–272). Berlin/Heidelberg: Springer.Google Scholar
- 24.Ping, W., Yi, T., Haibao, X., & Farong, S. (1997). A novel method for diabetes diagnosis based on electronic nose1. Biosensors and Bioelectronics, 12(9–10), 1031–1036.CrossRefGoogle Scholar
- 25.Capelli, L., Taverna, G., Bellini, A., Eusebio, L., Buffi, N., Lazzeri, M., Guazzoni, G., Bozzini, G., Seveso, M., Mandressi, A., Tidu, L., Grizzi, F., Sardella, P., Latorre, G., Hurle, R., Lughezzani, G., Casale, P., Meregali, S., & Sironi, S. (2016). Application and uses of electronic noses for clinical diagnosis on urine samples: A review. Sensors, 16(10), 1708.CrossRefGoogle Scholar
- 26.Bernabei, M., Pennazza, G., Santonico, M., Corsi, C., Roscioni, C., Paolesse, R., Di Natale, C., & D’Amico, A. (2008). A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sensors and Actuators B: Chemical, 131(1), 1–4.CrossRefGoogle Scholar
- 27.Berkhout, D., Benninga, M., van Stein, R., Brinkman, P., Niemarkt, H., de Boer, N., & de Meij, T. (2016). Effects of sampling conditions and environmental factors on fecal volatile organic compound analysis by an electronic nose device. Sensors, 16(11), 1967.CrossRefGoogle Scholar
- 28.Olson, A. L., & Pessin, J. E. (1996). Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annual Review of Nutrition, 16, 235–256.CrossRefGoogle Scholar
- 29.Viberti, G. C., Pickup, J. C., Jarrett, R. J., & Keen, H. (1979). Effect of control of blood-glucose on urinary-excretion of albumin and beta-2 microglobulin in insulin-dependent diabetes. The New England Journal of Medicine, 300(12), 638–641.CrossRefGoogle Scholar
- 30.Turner, R. C., Holman, R. R., Stratton, I. M., Cull, C. A., Matthews, D. R., Manley, S. E., Frighi, V., Wright, D., Neil, A., Kohner, E., McElroy, H., Fox, C., Hadden, D., & Grp, U. P. D. S. (1998). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 352(9131), 854–865.CrossRefGoogle Scholar
- 31.Harris, M. (1979). Classification and diagnosis of diabetes-mellitus and other categories of glucose-intolerance. Diabetes, 28(12), 1039–1057.CrossRefGoogle Scholar
- 32.Fang, H. J., Zhou, Y. H., Tian, Y. J., Du, H. Y., Sun, Y. X., & Zhong, L. Y. (2016). Effects of intensive glucose lowering in treatment of type 2 diabetes mellitus on cardiovascular outcomes: A meta-analysis of data from 58,160 patients in 13 randomized controlled trials. International Journal of Cardiology, 218, 50–58.CrossRefGoogle Scholar
- 33.Gerstein, H. C., Miller, M. E., Byington, R. P., Goff, D. C., Bigger, J. T., Buse, J. B., Cushman, W. C., Genuth, S., Ismail-Beigi, F., Grimm, R. H., Probstfield, J. L., Simons-Morton, D. G., Friedewald, W. T., & Diabet, A. C. C. R. (2008). Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine, 358(24), 2545–2559.CrossRefGoogle Scholar
- 34.Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: A review of current and emerging technology. Diabetic Medicine, 26(3), 197–210.CrossRefGoogle Scholar
- 35.Wang, H. C., & Lee, A. R. (2015). Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 23(2), 191–200.CrossRefGoogle Scholar
- 36.Dong, S. J. (1991). Recent aspects of amperometric glucose sensor. Analytical Sciences, 7, 1427–1430.CrossRefGoogle Scholar
- 37.Park, S., Boo, H., & Chung, T. D. (2006). Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556(1), 46–57.CrossRefGoogle Scholar
- 38.Toghill, K. E., & Compton, R. G. (2010). Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science, 5(9), 1246–1301.Google Scholar
- 39.Tian, K., Prestgard, M., & Tiwari, A. (2014). A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering. C, Materials for Biological Applications, 41, 100–118.CrossRefGoogle Scholar
- 40.Lv, Y. X., Jin, S., Wang, Y., Lun, Z. Q., & Xia, C. H. (2016). Recent advances in the application of nanomaterials in enzymatic glucose sensors. Journal of the Iranian Chemical Society, 13(10), 1767–1776.CrossRefGoogle Scholar
- 41.Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase - An overview. Biotechnology Advances, 27(4), 489–501.CrossRefGoogle Scholar
- 42.Zaidi, S. A., & Shin, J. H. (2016). Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 149, 30–42.CrossRefGoogle Scholar
- 43.Zhang, M., Liao, C. Z., Mak, C. H., You, P., Mak, C. L., & Yan, F. (2015). Highly sensitive glucose sensors based on enzyme-modified wholegraphene solution-gated transistors. Scientific Reports-UK, 5, 8311.Google Scholar
- 44.Yu, S. L., Li, D. C., Chong, H., Sun, C. Y., Yu, H. X., & Xu, K. X. (2014). In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomedical Optics Express, 5(1), 275–286.CrossRefGoogle Scholar
- 45.Uwadaira, Y., Adachi, N., Ikehata, A., & Kawano, S. (2011). Development of a non-invasive blood glucose sensor using short-wavelength near-infrared spectroscopy and its application to glycemic index determination. Journal of Japanese Society for Food Science, 58(3), 97–104.CrossRefGoogle Scholar
- 46.Yu, S. L., Li, D. C., Chong, H., Sun, C. Y., & Xu, K. X. (2013). Tunable mid-infrared laser spectroscopy based on fiber-optic sensor for glucose measurement. In Proceeding SPIE, California, USA, 8591, 85910K1–6.Google Scholar
- 47.Saxl, T., Khan, F., Matthews, D. R., Zhi, Z. L., Rolinski, O., Ameer-Beg, S., & Pickup, J. (2009). Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosensors and Bioelectronics, 24(11), 3229–3234.CrossRefGoogle Scholar
- 48.Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J., & Birch, D. J. S. (2005). Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20(12), 2555–2565.CrossRefGoogle Scholar
- 49.Demircik, F., Klonoff, D., Musholt, P. B., Ramljak, S., & Pfutzner, A. (2016). Successful performance of laboratory investigations with blood glucose meters employing a dynamic electrochemistry-based correction algorithm is dependent on careful sample handling. Diabetes Technology & Therapeutics, 18(10), 650–656.CrossRefGoogle Scholar
- 50.An, L. W., Zhao, L., Chen, Y. C., Chen, Y. Y., Jia, T. L., Wang, Y. X., Zhang, L. D., Wang, H. D., Jia, L. M., Wang, Y. Y., Li, W. T., Shi, X. R., Nie, P., Ding, X. J., Chen, J., He, Y. L., Feng, Y. H., Shi, J. L., Sui, X. T., Wang, Y. H., Song, S. N., Hsu, H. C., Lee, Y., Lu, J. M., Hu, Z. H., Ding, K., & Ji, L. N. (2016). What the intelligent blood glucose meter tells us: The implications of 0.67 million self monitoring of blood glucose data for SMBG behavior and blood glucose control of people with diabetes. Diabetes-Metabolish Research, 32(Supp 2), 77–78.Google Scholar
- 51.Mayzel, Y., Gal, A., Harman-Boehm, I., Drexler, A., Naidis, E., Goldstein, N., Horman, K., & Cohen, S. (2014). Acceptance of a truly non-invasive glucose monitoring device for home use. Diabetologia, 57, S404–S404.Google Scholar
- 52.Forst, T., Pfutzner, A., Forst, S., Larbig, M., Dewarrat, R., Schrepfer, T., & Caduff, A. (2004). Accuracy of the non-invasive glucose monitoring device Pendra compared to alternate site testing at the lower forearm during dynamic blood glucose changes in type 1 diabetic patients. Diabetes, 53, A102–A102.Google Scholar
- 53.Gal, A., Harman-Boehm, I., Drexler, A., Naidis, E., Mayzel, Y., Goldstein, N., Horman, K., Cohen, S., & Krasilshchikov, Y. (2015). Enabling frequent blood glucose monitoring at home using a truly non-invasive device. Diabetes Technol The, 17, A78–A78.Google Scholar
- 54.Amir, O., Kononenko, A., Gabis, E., & Karasik, A. (2006). Evaluation of a non-invasive continuous glucose monitoring device in a home use setting. Diabetologia, 49, 581–581.Google Scholar
- 55.Wrobel, M. S. (2016). Non-invasive blood glucose monitoring with Raman spectroscopy: Prospects for device miniaturization. IOP Conference Series: Materials Science and Engineering, 104, 12036–12045.Google Scholar
- 56.Tura, A., Maran, A., & Pacini, G. (2007). Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice, 77(1), 16–40.CrossRefGoogle Scholar
- 57.Buda, R. A., & Addi, M. M. (2014). A portable non-invasive blood glucose monitoring device. Ieee Conference on Biomedical Engineering and Sciences (Iecbes) 2014, pp. 964–969.Google Scholar
- 58.Andrews, J. T., Solanki, J., Choudhary, O. P., Chouksey, S., Malvia, N., Chaturvedi, P., & Sen, P. (2012). Towards a wearable non-invasive blood glucose monitoring device. Journal of Physics Conference Series, 365, 12004–12009.Google Scholar
- 59.Tsalikian, E., Beck, R. W., Tamborlane, W. V., Chase, P., Buckingham, B. A., Weinzimer, S. A., Mauras, N., Ruedy, K. J., Kollman, C., Xing, D. Y., Fiallo-Scharer, R., Fisher, J. H., Tsalikian, E., Tansey, M. J., Larson, L. F., Wysocki, T., Gagnon, K. M., Todd, P., Wilson, D. M., Block, J. M., Kunselman, E. L., Tamborlane, W. V., Doyle, E. A., Moke, P. S., Labastie, L. M., Becker, D. M., Cox, C., Ryan, C. M., White, N. H., White, P. C., Steffes, M. W., Bucksa, J. M., Nowicki, M. L., Grave, G. D., Linder, B., Winer, K. K., & Grp, D. S. (2004). Accuracy of the GlucoWatch G2 biographer and the continuous glucose monitoring system during hypoglycemia – Experience of the diabetes research in children network. Diabetes Care, 27(3), 722–726.CrossRefGoogle Scholar
- 60.Davis, T., Tamada, J., Lee, J., & Eastman, R. (2003). Effect of topical corticosteroid pre-treatment on skin irritation and performance of the GlucoWatch (R) G2 (TM) biographer. Diabetes, 52, A91–A92.Google Scholar
- 61.Hathout, E., Patel, N., Southern, C., Hill, J., Anderson, R., Sharkey, J., Hadley-Scofield, M., Tran, L., Leptien, A., Lopatin, M., Wang, B., Mace, J., & Eastman, R. (2005). Home use of the GlucoWatch G2 biographer in children with diabetes. Pediatrics, 115(3), 662–666.CrossRefGoogle Scholar
- 62.Gal, A., Mayzel, Y., Harman-Boehm, I., Naidis, E., & Trieman, L. (2011). Evaluation of performances and efficacy of GlucoTrack (R), a truly non-invasive glucose monitor for home and home-alike use. Diabetologia, 54, S411–S412.Google Scholar
- 63.Gal, A., Harman-Boehm, I., Naidis, E., Mayzel, Y., & Goldstein, N. (2013). Validity of GlucoTrack (R), a non-invasive glucose monitor, for a variety of people with diabetes. Diabetic Medicine, 30, 69–69.Google Scholar
- 64.Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363–371.CrossRefGoogle Scholar
- 65.Heise, H. M., Marbach, R., Koschinsky, T., & Gries, F. A. (1994). Noninvasive blood-glucose sensors based on near-Infrared spectroscopy. Artificial Organs, 18(6), 439–447.CrossRefGoogle Scholar
- 66.Robinson, M. R., Eaton, R. P., Ward, K. J., & Haaland, D. M. (1990). Whole-blood glucose determination by infrared-spectroscopy for development of a non-invasive glucose sensor. Clinical Research, 38(1), A217–A217.Google Scholar
- 67.Kutter, D. (2000). The urine test strip of the future. Clinica Chimica Acta, 297(1–2), 297–304.CrossRefGoogle Scholar
- 68.Son, J. E. (1994). Patient’s stool and urine disposing apparatus. Google patents, patent no. 5, 342, 583.Google Scholar
- 69.Turner, A. (2013). Biosensors: Then and now. Trends in Biotechnology, 31(3), 119–120.CrossRefGoogle Scholar
- 70.Yan, F., Mok, S. M., Yu, J., Chan, H. L., & Yang, M. (2009). Label-free DNA sensor based on organic thin film transistors. Biosensors and Bioelectronics, 24(5), 1241–1245.CrossRefGoogle Scholar
- 71.Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.CrossRefGoogle Scholar
- 72.Yao, C., Li, Q., Guo, J., Yan, F., & Hsing, I. M. (2015). Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Advanced Healthcare Materials, 4(4), 528–533.CrossRefGoogle Scholar
- 73.Kim, J., Valdes-Ramirez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramirez, J., Mercier, P., & Wang, J. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. The Analyst, 139(7), 1632–1636.CrossRefGoogle Scholar
- 74.Schneyer, L. H., Young, J. A., & Schneyer, C. A. (1972). Salivary secretion of electrolytes. Physiological Reviews, 52(3), 720–777.Google Scholar
- 75.Chicharro, J. L., Lucia, A., Perez, M., Vaquero, A. F., & Urena, R. (1998). Saliva composition and exercise. Sports Medicine (Auckland, N.Z.), 26(1), 17–27.CrossRefGoogle Scholar
- 76.Esashi, M., & Matsuo, T. (1978). Integrated micro multi ion sensor using field effect of semiconductor. IEEE Transactions on Bio-medical Engineering, 25(2), 184–192.CrossRefGoogle Scholar
- 77.Iida, T., Okamura, S., Kakizaki, S., Sagawa, T., Zhang, Y., Kobayashi, R., Masuo, T., & Mori, M. (2013). Carbon dioxide insufflation reduces the discomfort due to colonoscopy as objectively analyzed by salivary stress markers. Acta Gastro-Enterologica Belgica, 76(2), 219–224.Google Scholar
- 78.Graf, H., & Muhlemann, H. R. (1966). Telemetry of plaque pH from interdental area. Helvetica Odontologica Acta, 10(2), 94–101.Google Scholar
- 79.Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdes-Ramirez, G., Paixao, T. R., Mercier, P. P., & Wang, J. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 74, 1061–1068.CrossRefGoogle Scholar
- 80.Sakamoto, M., Umeda, M., Ishikawa, I., & Benno, Y. (2000). Comparison of the oral bacterial flora in saliva from a healthy subject and two periodontitis patients by sequence analysis of 16S rDNA libraries. Microbiology and Immunology, 44(8), 643–652.CrossRefGoogle Scholar
- 81.Liao, C., Mak, C., Zhang, M., Chan, H. L., & Yan, F. (2015). Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Advanced Materials, 27(4), 676–681.CrossRefGoogle Scholar
- 82.Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N., Omenetto, F. G., & McAlpine, M. C. (2012). Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 3, 763.CrossRefGoogle Scholar
- 83.Nakatsukasa, M., Sotozono, C., Shimbo, K., Ono, N., Miyano, H., Okano, A., Hamuro, J., & Kinoshita, S. (2011). Amino acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. American Journal of Ophthalmology, 151(5), 799–808.e1.CrossRefGoogle Scholar
- 84.Choy, C. K. M., Cho, P., Chung, W. Y., & Benzie, I. F. F. (2001). Water-soluble antioxidants in human tears: Effect of the collection method. Investigative Ophthalmology and Visual Science, 42(13), 3130–3134.Google Scholar
- 85.van Haeringen, N. J., & Glasius, E. (1977). Collection method dependent concentrations of some metabolites in human tear fluid, with special reference to glucose in hyperglycaemic conditions. Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Albrecht von Graefe’s archive for clinical and experimental ophthalmology, 202(1), 1–7.CrossRefGoogle Scholar
- 86.Pankratov, D., González-Arribas, E., Blum, Z., & Shleev, S. (2016). Tear based bioelectronics. Electroanalysis, 28(6), 1250–1266.CrossRefGoogle Scholar
- 87.Yao, H., Liao, Y., Lingley, A. R., Afanasiev, A., Lähdesmäki, I., Otis, B. P., & Parviz, B. A. (2012). A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. Journal of Micromechanics and Microengineering, 22(7), 075007.CrossRefGoogle Scholar
- 88.Otis, B., & Parviz, B. Introducing our smart contact lense project. https://blog.google/topics/alphabet/introducing-our-smart-contact-lens/
- 89.Iguchi, S., Kudo, H., Saito, T., Ogawa, M., Saito, H., Otsuka, K., Funakubo, A., & Mitsubayashi, K. (2007). A flexible and wearable biosensor for tear glucose measurement. Biomedical Microdevices, 9(4), 603–609.CrossRefGoogle Scholar
- 90.Kagie, A., Bishop, D. K., Burdick, J., La Belle, J. T., Dymond, R., Felder, R., & Wang, J. (2008). Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanalysis, 20(14), 1610–1614.CrossRefGoogle Scholar
- 91.Chu, M., Shirai, T., Takahashi, D., Arakawa, T., Kudo, H., Sano, K., Sawada, S.-i., Yano, K., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., & Mitsubayashi, K. (2011). Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents. Biomedical Microdevices, 13(4), 603–611.CrossRefGoogle Scholar
- 92.Falk, M., Andoralov, V., Silow, M., Toscano, M. D., & Shleev, S. (2013). Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Analytical Chemistry, 85(13), 6342–6348.CrossRefGoogle Scholar
- 93.Thomas, N., Lähdesmäki, I., & Parviz, B. A. (2012). A contact lens with an integrated lactate sensor. Sensors and Actuators B: Chemical, 162(1), 128–134.CrossRefGoogle Scholar
- 94.Mitsubayashi, K., Suzuki, M., Tamiya, E., & Karube, I. (1994). Analysis of metabolites in sweat as a measure of physical condition. Analytica Chimica Acta, 289(1), 27–34.CrossRefGoogle Scholar
- 95.Schazmann, B., Morris, D., Slater, C., Beirne, S., Fay, C., Reuveny, R., Moyna, N., & Diamond, D. (2010). A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Analytical Methods, 2(4), 342–348.CrossRefGoogle Scholar
- 96.Weber, J., Kumar, A., Kumar, A., & Bhansali, S. (2006). Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sensors and Actuators B: Chemical, 117(1), 308–313.CrossRefGoogle Scholar
- 97.Brauker, J. H., Tapsak, M. A., Saint, S. T., Kamath, A. U., Neale, P. V., Simpson, P. C., Mensinger, M. R., & Markovic, D. Integrated delivery device for continuous glucose sensor. Google Patents: 2009.Google Scholar
- 98.Heaney, R. P. (1992). Calcium in the prevention and treatment of osteoporosis. Journal of Internal Medicine,Nebraska, USA, 231(2), 169–180.Google Scholar
- 99.Guinovart, T., Parrilla, M., Crespo, G. A., Rius, F. X., & Andrade, F. J. (2013). Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. The Analyst, 138(18), 5208–5215.CrossRefGoogle Scholar
- 100.Wujcik, E. K., Blasdel, N. J., Trowbridge, D., & Monty, C. N. (2013). Ion sensor for the quantification of sodium in sweat samples. IEEE Sensors Journal, 13(9), 3430–3436.CrossRefGoogle Scholar
- 101.Windmiller, J. R., Bandodkar, A. J., Valdes-Ramirez, G., Parkhomovsky, S., Martinez, A. G., & Wang, J. (2012). Electrochemical sensing based on printable temporary transfer tattoos. Chemical Communications, 48(54), 6794–6796.CrossRefGoogle Scholar
- 102.Jia, W., Bandodkar, A. J., Valdés-Ramírez, G., Windmiller, J. R., Yang, Z., Ramírez, J., Chan, G., & Wang, J. (2013). Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical Chemistry, 85(14), 6553–6560.CrossRefGoogle Scholar
- 103.Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., Andrade, F. J., Schöning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRefGoogle Scholar
- 104.Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827–1879.CrossRefGoogle Scholar
- 105.Kanbara, A., Miura, Y., Hyogo, H., Chayama, K., & Seyama, I. (2012). Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutrition Journal, 11, 39.CrossRefGoogle Scholar
- 106.Miller, E. (1995). Long-term monitoring of the diabetic dog and cat. Veterinary Clinics of North America: Small Animal Practice, 25(3), 571–584.CrossRefGoogle Scholar
- 107.Pezzaniti, J. L., Jeng, T.-W., McDowell, L., & Oosta, G. M. (2001). Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clinical Biochemistry, 34(3), 239–246.CrossRefGoogle Scholar
- 108.Sheerin, N. S. (2011). Urinary tract infection. Medicine, 39(7), 384–389.CrossRefGoogle Scholar
- 109.Rosenstock, J., & Ferrannini, E. (2015). Euglycemic diabetic ketoacidosis: A predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care, 38(9), 1638–1642.CrossRefGoogle Scholar
- 110.Todenhöfer, T., Hennenlotter, J., Tews, V., Gakis, G., Aufderklamm, S., Kuehs, U., Stenzl, A., & Schwentner, C. (2013). Impact of different grades of microscopic hematuria on the performance of urine-based markers for the detection of urothelial carcinoma. Urologic Oncology: Seminars and Original Investigations, 31(7), 1148–1154.CrossRefGoogle Scholar
- 111.Mava, Y., Ambe, J. P., Bello, M., Watila, I., & Pius, S. (2011). Evaluation of the nitrite test in screening for urinary tract infection in febrile children with sickle cell anaemia in Maiduguri- Nigeria. Nigerian Medical Journal: Journal of the Nigeria Medical Association, 52(1), 45–48.Google Scholar
- 112.Comer, J. P. (1956). Semiquantitative specific test paper for glucose in urine. Analytical Chemistry, 28(11), 1748–1750.CrossRefGoogle Scholar
- 113.Liang, C., Peng, H., Bao, X., Nie, L., & Yao, S. (1999). Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine. The Analyst, 124(12), 1781–1785.CrossRefGoogle Scholar
- 114.Kodama, H., Yoshimura, H., & Nagata, Y. (2009). An ultrasonic urine sensor. Gerontechnology, 8(1), 35.CrossRefGoogle Scholar
- 115.Zhang, W., Bauer, M., Croner, R. S., Pelz, J. O. W., Lodygin, D., Hermeking, H., Stürzl, M., Hohenberger, W., & Matzel, K. E. (2007). DNA stool test for colorectal cancer: Hypermethylation of the secreted frizzled-related protein-1 gene. Diseases of the Colon & Rectum, 50(10), 1618–1627.CrossRefGoogle Scholar
- 116.Wu, I. C., Ke, H.-L., Lo, Y.-C., Yang, Y.-C., Chuang, C.-H., Yu, F.-J., Lee, Y.-C., Jan, C.-M., Wang, W.-M., & Wu, D.-C. (2003). Evaluation of a newly developed office-based stool test for detecting Helicobacter pylori: An extensive pilot study. Hepato-Gastroenterology, 50(54), 1761–1765.Google Scholar
- 117.Johnson, W. C. (2006). The biomarker guide, vol 1, & 2. Geoarchaeology, 21(5), 515–517.CrossRefGoogle Scholar
- 118.Maisel, A. (2011). Biomonitoring and biomarker-guided therapy the next step in heart failure and biomarker research. Journal of the American College of Cardiology, 58(18), 1890–1892.CrossRefGoogle Scholar
- 119.Good, D. W., Stewart, G. D., Hammer, S., Scanlan, P., Shu, W., Phipps, S., Reuben, R., & McNeill, A. S. (2014). Elasticity as a biomarker for prostate cancer: A systematic review. BJU International, 113(4), 523–534.CrossRefGoogle Scholar
- 120.Engwegen, J. Y. M. N., Helgason, H. H., Cats, A., Bonfrer, J. M. G., Schellens, J. H. M., & Beijnen, J. H. (2005). Proteomics in patients with colorectal cancer: Detection of biomarker proteins discriminating patients from healthy controls. British Journal of Clinical Pharmacology, 59(1), 128–128.Google Scholar
- 121.Liang, S. F., Xu, Z. Z., Xu, X. J., Zhao, X., Huang, C. H., & Wei, Y. Q. (2012). Quantitative proteomics for cancer biomarker discovery. Combinatorial Chemistry and High Throughput Screening, 15(3), 221–231.CrossRefGoogle Scholar
- 122.Hernandez, J., & Thompson, I. M. (2004). Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer, 101(5), 894–904.CrossRefGoogle Scholar
- 123.Tawa, K., Kondo, F., Sasakawa, C., Nagae, K., Nakamura, Y., Nozaki, A., & Kaya, T. (2015). Sensitive detection of a tumor marker, alpha-fetoprotein, with a sandwich assay on a plasmonic chip. Analytical Chemistry, 87(7), 3871–3876.CrossRefGoogle Scholar
- 124.Yu, X. P., Li, Y. N., Wu, J., & Ju, H. X. (2014). Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Analytical Chemistry, 86(9), 4501–4507.CrossRefGoogle Scholar
- 125.Kristiansen, S., Jorgensen, L. M., Guldberg, P., & Soletormos, G. (2013). Aberrantly methylated DNA as a biomarker in breast cancer. The International Journal of Biological Markers, 28(2), 141–150.CrossRefGoogle Scholar
- 126.Jin, C., Qiu, L. P., Li, J., Fu, T., Zhang, X. B., & Tan, W. H. (2016). Cancer biomarker discovery using DNA aptamers. The Analyst, 141(2), 461–466.CrossRefGoogle Scholar
- 127.Uhl, B., Gevensleben, H., Tolkach, Y., Sailer, V., Majores, M., Jung, M., Meller, S., Stein, J., Ellinger, J., Dietrich, D., & Kristiansen, G. (2017). PITX2 DNA methylation as biomarker for individualized risk assessment of prostate cancer in core biopsies. The Journal of Molecular Diagnostics, 19(1), 107–114.CrossRefGoogle Scholar
- 128.Li, C. Z., Karadeniz, H., Canavar, E., & Erdem, A. (2012). Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochimica Acta, 82, 137–142.CrossRefGoogle Scholar
- 129.Qiu, L. P., Qiu, L., Zhou, H., Wu, Z. S., Shen, G. L., & Yu, R. Q. (2014). Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism. New Journal of Chemistry, 38(10), 4711–4715.CrossRefGoogle Scholar
- 130.Daggumati, P., Matharu, Z., Wang, L., & Seker, E. (2015). Biofouling-resilient nanoporous gold electrodes for DNA sensing. Analytical Chemistry, 87(17), 8618–8622.CrossRefGoogle Scholar
- 131.Das, J., Ivanov, I., Sargent, E. H., & Kelley, S. O. (2016). DNA clutch probes for circulating tumor DNA analysis. Journal of the American Chemical Society, 138(34), 11009–11016.CrossRefGoogle Scholar
- 132.Li, C. X., Wang, H. Y., Shen, J., & Tang, B. (2015). Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Analytical Chemistry, 87(8), 4283–4291.CrossRefGoogle Scholar
- 133.Li, S. C., Yang, X. R., Yang, J. M., Zhen, J. S., & Zhang, D. C. (2016). Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clinical and Experimental Medicine, 16(1), 29–35.CrossRefGoogle Scholar
- 134.Kilic, T., Erdem, A., Erac, Y., Seydibeyoglu, M. O., Okur, S., & Ozsoz, M. (2015). Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis, 27(2), 317–326.CrossRefGoogle Scholar
- 135.Brennan, E., Moriarty, R., Keyes, T. E., & Forster, R. J. (2016). Detection and live-cell imaging of a micro-RNA associated with the cancer neuroblastoma. Bioconjugate Chemistry, 27(10), 2332–2336.CrossRefGoogle Scholar
- 136.Joshi, G. K., Deitz-McElyea, S., Liyanage, T., Lawrence, K., Mali, S., Sardar, R., & Korc, M. (2015). Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano, 9(11), 11075–11089.CrossRefGoogle Scholar
- 137.Liu, Q., Yeh, Y. C., Rana, S., Jiang, Y., Guo, L., & Rotello, V. M. (2013). Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays. Cancer Letters, 334(2), 196–201.CrossRefGoogle Scholar
- 138.Tang, X., & Saif, T. (2012). Loss of cell adhesion in colon cancer cells during in vitro metastasis measured by bio-mems force sensor. Proceedings of the Asme Summer Bioengineering Conference, Pts a and B 2012, pp. 251–252.Google Scholar
- 139.Shi, J., Li, Y., Liang, S. Z., Zeng, J. Y., Liu, G. F., Mu, F., Li, H. B., Chen, J. B., Liu, T. J., & Niu, L. Z. (2016). Analysis of circulating tumor cells in colorectal cancer liver metastasis patients before and after cryosurgery. Cancer Biology & Therapy, 17(9), 935–942.CrossRefGoogle Scholar
- 140.Cheng, S., Chen, J. F., Lu, Y. T., Chung, L. W. K., Tseng, H. R., & Posadas, E. M. (2016). Applications of circulating tumor cells for prostate cancer. Asian Journal of Urology, 3(4), 254–259.CrossRefGoogle Scholar
- 141.McInness, L., Blick, T., Le, V. P. A. L., Tachtsidis, A., Dissanayake, V., Huang, D., Berchtenbreiter, K., Sundararajan, V., Choong, P. F., Di Bella, C., Henderson, M., Saunders, C., Dobrovic, A., Dowling, A., & Thompson, E. (2016). Circulating and disseminated tumor cells in breast cancer. Asia-Pacific Journal of Clinical Oncology, 12, 77–77.CrossRefGoogle Scholar
- 142.Parajuli, R., Ao, Z., Shah, S. H., Sengul, T. K., Lippman, M. E., Datar, R., & El-Ashry, D. (2016). Circulating cells from the tumor microenvironment as liquid biopsy biomarkers alongside circulating tumor cells in metastatic breast cancer. Cancer Research, 76, P2-02-10.Google Scholar
- 143.Busetto, G. M., Giovannone, R., Antonini, G., Gazzaniga, P., Gentile, V., & De Berardinis, E. (2016). Circulating tumor cells (Ctc) identification in bladder cancer using epcam (Epithelial Cell Adhesion Molecule): Comparison between manual and automated system of isolation and future prospective. Journal Urology, 195(4), E611–E611.CrossRefGoogle Scholar
- 144.Terzi, E., Simsek, E., Carhan, A., Dilek, Y., Taspinar, R., Devecioglu, B., & Guler, O. O. (2016). Circulating tumor cells (CTCs) in peripheral blood: Liquid biopsy for cancer patients. The FEBS Journal, 283, 301–301.Google Scholar
- 145.Zheng, F., Cheng, Y., Wang, J., Lu, J., Zhang, B., Zhao, Y., & Gu, Z. (2014). Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Advanced Materials, 26(43), 7333–7338.CrossRefGoogle Scholar
- 146.Maltez-da Costa, M., de la Escosura-Muniz, A., Nogues, C., Barrios, L., Ibanez, E., & Merkoci, A. (2012). Simple monitoring of cancer cells using nanoparticles. Nano Letters, 12(8), 4164–4171.CrossRefGoogle Scholar
- 147.Wan, Y., Zhou, Y. G., Poudineh, M., Safaei, T. S., Mohamadi, R. M., Sargent, E. H., & Kelley, S. O. (2014). Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angewandte Chemie International Edition, 53(48), 13145–13149.CrossRefGoogle Scholar