• Naoki KobayashiEmail author
  • Shinji Yamamori


The development of wearable chemical sensors is of interest to obtain comprehensive information for health promotion. However, the development of wearable sensors faces many challenges for long-term use, easy handling, response time, accuracy, validity, and reliability. There are several imitations to produce simple wearable sensors, and above these, optical gas sensors are a promising tool. Monitoring of oxygenation by pulse oximeter and components of expired gas by capnometer is a successful technology. In this section, these two sensors are reviewed including sensor principle and limitation of use.


Pulse oximeter Oxygen saturation Optical density Red and infrared wavelengths Capnometer Carbon dioxide expired gas 


  1. 1.
    Aoyagi, T., Kishi, M., Yamaguchi, K., & Watanabe, S. (1974). Improvement of ear-piece oximeter. Proceedings of the 13th annual meeting of the Japanese Society of Medical and Biological Engineering Osaka, 90/91.Google Scholar
  2. 2.
    Inai T. (1992). Drive circuit for light-emitting diode in pulse oximeter. Patent US5590652 1992.Google Scholar
  3. 3.
    Agashe, G. S., Coakley, J., & Mannheimer, P. D. (2006). Forehead pulse oximetry: Headband use helps alleviate false low readings likely related to venous pulsation artifact. Anesthesiology, 105(6), 1111–1116.CrossRefGoogle Scholar
  4. 4.
    Mannheimer, P. D. (2007). The light-tissue interaction of pulse oximetry. Anesthesia and Analgesia, 105(6 Suppl), S10–S17. Review.CrossRefGoogle Scholar
  5. 5.
    Budidha, K., & Kyriacou, P. A. (2017). In vivo investigation of ear canal pulse oximetry during hypothermia. Journal of Clinical Monitoring and Computing. Published Online 27 January.Google Scholar
  6. 6.
    Takeda, S., Kobayashi, N., & Kubota, H. (2005). Apparatus for determining concentrations of light absorbing substances in blood. Patent US7313426: 2005.Google Scholar
  7. 7.
    Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors—past and present. Electronics, 3(2), 282–302.CrossRefGoogle Scholar
  8. 8.
    Reynolds, K. J., Palayiwa, E., Moyle, J. T., Sykes, M. K., & Hahn, C. E. (1993). The effect of dyshemoglobins on pulse oximetry: Part I, Theoretical approach and Part II, Experimental results using an in vitro test system. Journal of Clinical Monitoring, 9(2), 81–90.CrossRefGoogle Scholar
  9. 9.
    Suzaki, H., Kobayashi, N., Nagaoka, T., Iwasaki, K., Umezu, M., Takeda, S., & Togawa, T. (2006). Noninvasive measurement of total hemoglobin and hemoglobin derivatives using multiwavelength pulse spectrophotometry -In vitro study with a mock circulatory system. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 799–802.Google Scholar
  10. 10.
    Noiri, E., Kobayashi, N., Takamura, Y., Iijima, T., Takagi, T., Doi, K., Nakao, A., Yamamoto, T., Takeda, S., & Fujita, T. (2005). Pulse total-hemoglobinometer provides accurate noninvasive monitoring. Critical Care Medicine, 33(12), 2831–2835.CrossRefGoogle Scholar
  11. 11.
    Barker, S. J., Curry, J., Redford, D., & Morgan, S. (2006). Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: A human volunteer study. Anesthesiology, 105(5), 892–897.CrossRefGoogle Scholar
  12. 12.
    Barker, S. J., & Badal, J. J. (2008). The measurement of dyshemoglobins and total hemoglobin by pulse oximetry. Current Opinion in Anaesthesiology, 21(6), 805–810.CrossRefGoogle Scholar
  13. 13.
    Maxim Integrated Products, Inc. (2014). MAX30100 - Pulse oximeter and heart-rate sensor IC for wearable health.Google Scholar
  14. 14.
    Cruz, D. F., Rodrigues, E. M. G., & Godina, R. (2016). Innovative experimental low cost electronics operated instrumentation for wearable health systems with high resolution physiological measurements. IEEE 16th international conference on Environment and Electrical Engineering (EEEIC). doi: 10.1109/EEEIC.2016.7555658.Google Scholar
  15. 15.
    Bartlett, M. D., Markvicka, E. J., & Majidi, C. (2016). Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Advanced Functional Materials.
  16. 16.
    Texas Instruments Incorporated. AFE4490 integrated analog front-end for pulse oximeters, SBAS602H –December 2012–Revised October 2014.Google Scholar
  17. 17.
    Kim, J., Salvatore, G. A., Araki, H., Chiarelli, A. M., Xie, Z., Banks, A., Sheng, X., Liu, Y., Lee, J. W., Jang, K. I., Heo, S. Y., Cho, K., Luo, H., Zimmerman, B., Kim, J., Yan, L., Feng, X., Xu, S., Fabiani, M., Gratton, G., Huang, Y., Paik, U., & Rogers, J. A. (2016). Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2(8), e1600418.CrossRefGoogle Scholar
  18. 18.
    Kim, J., Gutruf, P., Chiarelli, A. M., Heo, S.-Y., Cho, K., Xie, Z., Banks, A., Han, S., Jang, K.-I., Lee, J.-W., Lee, K.-T., Feng, X., Huang, Y., Fabiani, M., Gratton, G., Paik, U., & Rogers, J. A. (2016). Miniaturized battery-free wireless systems for wearable pulse oximetry. Advanced Functional Materials.
  19. 19.
    Severinghaus, J. W., & Honda, Y. (1987). History of blood gas analysis. VII. Pulse oximetry. Journal of Clinical Monitoring, 3(2), 135–138.CrossRefGoogle Scholar
  20. 20.
    Logan, A. G., Perlikowski, S. M., Mente, A., Tisler, A., Tkacova, R., Niroumand, M., Leung, R. S., & Bradley, T. D. (2001). High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. Journal of Hypertension, 19(12), 2271–2277.CrossRefGoogle Scholar
  21. 21.
    Oldenburg, O., Faber, L., Vogt, J., Dorszewski, A., Szabados, F., Horstkotte, D., & Lamp, B. (2007). Influence of cardiac resynchronisation therapy on different types of sleep disordered breathing. European Journal of Heart Failure, 9(8), 820–826. Epub 2007 Apr 27.CrossRefGoogle Scholar
  22. 22.
    Gami, A. S., Howard, D. E., Olson, E. J., & Somers, V. K. (2005). Day-night pattern of sudden death in obstructive sleep apnea. The New England Journal of Medicine, 352(12), 1206–1214.CrossRefGoogle Scholar
  23. 23.
    Gravenstein, J. S., Jaffe, M. B., Gravenstein, N., & Paulus, D. A. (2011). Capnography (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  24. 24.
    ASA Standards for Basic Anesthetic Monitoring, Committee of Origin: Standards and Practice Parameters (Approved by the ASA House of Delegates on October 21, 1986, and last amended on October 20, 2010, and last affirmed on October 28, 2015).Google Scholar
  25. 25.
    American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-anesthesiologists. (2002). Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology, 96, 1004–1017.CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Raemer, D. B., & Calalang, I. (1991). Accuracy of end-tidal carbon dioxide tension analyzers. Journal of Clinical Monitoring, 7, 195–208.CrossRefGoogle Scholar
  28. 28.
    Bergman, N. A., Racknow, H., & Frumin, M. J. (1958). The collision broadening effect of nitrous oxide upon infrared analysis of carbon dioxide during anesthesia. Anesthesiology, 19, 19–26.CrossRefGoogle Scholar
  29. 29.
    Block, F. E., Jr., & McDonald, J. S. (1992). Sidestream versus mainstream carbon dioxide analyzer. Journal of Clinical Monitoring, 8, 139–141.CrossRefGoogle Scholar
  30. 30.
    Pascucci, R. C., Schena, J. A., & Thompson, J. E. (1989). Comparison of a sidestream and mainstream capnometer in infants. Critical Care Medicine, 17, 560–562.CrossRefGoogle Scholar
  31. 31.
    Morioka, J., Yamamori, S., & Ozaki, M. (2006). Evaluation of a compact device for capnometry of mainstream type compared with one of sidestream type in a postoperative care unit. Masui, 55, 1496–1501.Google Scholar
  32. 32.
    Yamamori, S., Takasaki, Y., Ozaki, M., & Iseki, H. (2008). A flow-through capnometer for obstructive sleep apnea. Journal of Clinical Monitoring and Computing, 22, 209–220.CrossRefGoogle Scholar
  33. 33.
    Sakata, D. J., Matsubara, I., Nishant, A. G., Westenskow, D. R., White, J. L., Yamamori, S., Egan, T. D., & Pace, N. L. (2009). Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient. Journal of Clinical Monitoring and Computing, 23, 115–122.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Ogino Memorial LaboratoryNihon Kohden CorporationTokorozawa-shi, SaitamaJapan

Personalised recommendations