Skip to main content

New Imaging Techniques for Bone

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 1768 Accesses

Abstract

The advent of novel imaging techniques that allow noninvasive in vivo assessment of cortical and trabecular bone structure has provided new insights and increased our understanding of bone physiology, pathophysiology, and the effects of therapeutic interventions. These imaging modalities have also shown promise for better fracture prediction, combining assessment of both bone quantity and quality. The technical characteristics, current clinical applications with an emphasis on primary osteoporosis in postmenopausal women, and potential limitations of these imaging techniques will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.

    Article  PubMed  Google Scholar 

  2. Sanders KM, Nicholson GC, Watts JJ, et al. Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone. 2006;38:694–700.

    Article  PubMed  Google Scholar 

  3. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang X, Gruner M, Tremollieres F, et al. Diagnostic accuracy of FRAX in predicting the 10-year risk of osteoporotic fractures using the USA treatment thresholds: a systematic review and meta-analysis. Bone. 2017;99:20–5.

    Article  PubMed  Google Scholar 

  5. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14:302–12.

    Article  PubMed  Google Scholar 

  6. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42:775–87.

    Article  PubMed  Google Scholar 

  7. Muschitz C, Kocijan R, Haschka J, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79:259–66.

    Article  PubMed  Google Scholar 

  8. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24:2455–60.

    Article  CAS  PubMed  Google Scholar 

  9. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26:2762–9.

    Article  PubMed  Google Scholar 

  10. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporosis Int. 2013;24:991–8.

    Article  Google Scholar 

  11. Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom Off J Int Soc Clin Densitom. 2014;17:60–5.

    Article  Google Scholar 

  12. Lamy O, Metzger M, Krieg MA, Aubry-Rozier B, Stoll D, Hans D. OsteoLaus: prediction of osteoporotic fractures by clinical risk factors and DXA, IVA and TBS. Rev Med Suisse. 2011;7(2130):2–4–6.

    Google Scholar 

  13. Leib E, Winzenrieth R, Aubry-Rozier B, Hans D. Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone. 2014;62:51–5.

    Article  CAS  PubMed  Google Scholar 

  14. Leib E, Winzenrieth R, Lamy O, Hans D. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014;95:201–8.

    Article  CAS  PubMed  Google Scholar 

  15. Nassar K, Paternotte S, Kolta S, Fechtenbaum J, Roux C, Briot K. Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range. Osteoporosis Int. 2014;25:243–9.

    Article  CAS  Google Scholar 

  16. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom: The Off J Int Soc Clin Densitom. 2009;12:170–6.

    Article  Google Scholar 

  17. Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone. 2010;46:176–81.

    Article  PubMed  Google Scholar 

  18. Touvier J, Winzenrieth R, Johansson H, et al. Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int. 2015;96:274–83.

    Article  CAS  PubMed  Google Scholar 

  19. Vasic J, Petranova T, Povoroznyuk V, et al. Evaluating spine micro-architectural texture (via TBS) discriminates major osteoporotic fractures from controls both as well as and independent of site matched BMD: the Eastern European TBS study. J Bone Miner Metab. 2014;32:556–62.

    Article  CAS  PubMed  Google Scholar 

  20. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86:104–9.

    Article  CAS  PubMed  Google Scholar 

  21. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporosis Int: A Journal Established as Result of Cooperation Between the Eur Foundation for Osteoporosis and the Nat Osteoporosis Foundation of the USA. 2013;24:77–85.

    Article  CAS  Google Scholar 

  22. Briot K, Paternotte S, Kolta S, et al. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone. 2013;57:232–6.

    Article  PubMed  Google Scholar 

  23. Iki M, Tamaki J, Kadowaki E, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. Journal Bone Min Res: The Off J Am Soc Bone Min Res. 2014;29:399–407.

    Article  Google Scholar 

  24. Leslie WD, Johansson H, Kanis JA, et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporosis Int: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2014;25:2271–7.

    Article  CAS  Google Scholar 

  25. McCloskey EV, Oden A, Harvey NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Min Res: The Off J Am Soc Bone Min Res. 2016;31:940–8.

    Article  Google Scholar 

  26. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Min Res: The Off J Am Soc Bone Min Res. 2014;29:518–30.

    Article  Google Scholar 

  27. Harvey NC, Gluer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: trabecular bone score. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry. 2015;18:309–30.

    Article  Google Scholar 

  29. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, Garcia M, Winzenrieth R. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone. 2015;75:138–43.

    Article  PubMed  Google Scholar 

  30. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD, Manitoba Bone Density P. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporosis Int: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013;24:1073–8.

    Article  CAS  Google Scholar 

  31. Petranova T, Sheytanov I, Monov S, Nestorova R, Rashkov R. Denosumab improves bone mineral density and microarchitecture and reduces bone pain in women with osteoporosis with and without glucocorticoid treatment. Biotechnol Biotechnol Equip. 2014;28:1127–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Popp AW, Guler S, Lamy O, et al. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone and Min Res: The Off J Am Soc Bone Min Res. 2013;28:449–54.

    Article  CAS  Google Scholar 

  33. Senn C, Gunther B, Popp AW, Perrelet R, Hans D, Lippuner K. Comparative effects of teriparatide and ibandronate on spine bone mineral density (BMD) and microarchitecture (TBS) in postmenopausal women with osteoporosis: a 2-year open-label study. Osteoporosis Int: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2014;25:1945–51.

    Article  CAS  Google Scholar 

  34. Kalder M, Hans D, Kyvernitakis I, Lamy O, Bauer M, Hadji P. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J Clin Densitom: The Official Journal of the International Society for Clinical Densitometry. 2014;17:66–71.

    Article  Google Scholar 

  35. Kalder M, Kyvernitakis I, Albert US, Baier-Ebert M, Hadji P. Effects of zoledronic acid versus placebo on bone mineral density and bone texture analysis assessed by the trabecular bone score in premenopausal women with breast cancer treatment-induced bone loss: results of the ProBONE II substudy. Osteoporosis Int: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2015;26:353–60.

    Article  CAS  Google Scholar 

  36. Leslie WD, Majumdar SR, Morin SN, Hans D, Lix LM. Change in trabecular bone score (TBS) with antiresorptive therapy does not predict fracture in women: the Manitoba BMD Cohort. J Bone Min Res: The Off J Am Soc Bone Min Res. 2017;32(3):618–23.

    Article  CAS  Google Scholar 

  37. Tsai JN, Jiang LA, Lee H, Hans D, Leder BZ. Effects of teriparatide, denosumab, or both on spine trabecular microarchitecture in DATA-Switch: a randomized controlled trial. J Clin Densitom. 2017;20:507–12.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98:602–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Choi HJ, Ku EJ, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100:475–82.

    Article  CAS  PubMed  Google Scholar 

  40. Paggiosi MA, Peel NF, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int. 2015;26:1773–80.

    Article  CAS  PubMed  Google Scholar 

  41. Naylor KL, Prior J, Garg AX, et al. Trabecular bone score and incident fragility fracture risk in adults with reduced kidney function. Clin J Am Soc Nephrol. 2016;11:2032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naylor KL, Lix LM, Hans D, et al. Trabecular bone score in kidney transplant recipients. Osteoporos Int. 2016;27:1115–21.

    Article  CAS  PubMed  Google Scholar 

  43. Yavropoulou MP, Vaios V, Pikilidou M, et al. Bone quality assessment as measured by trabecular bone score in patients with end-stage renal disease on dialysis. J Clin Densitom. 2017;20:490–7.

    Article  PubMed  Google Scholar 

  44. Brunerova L, Ronova P, Veresova J, et al. Osteoporosis and impaired trabecular bone score in hemodialysis patients. Kidney Blood Press Res. 2016;41:345–54.

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Saez MJ, Herrera S, Prieto-Alhambra D, et al. Bone density, microarchitecture, and tissue quality long-term after kidney transplant. Transplantation. 2017;101:1290–4.

    Article  PubMed  Google Scholar 

  46. Perez-Saez MJ, Herrera S, Prieto-Alhambra D, et al. Bone density, microarchitecture, and material strength in chronic kidney disease patients at the time of kidney transplantation. Osteoporos Int. 2017;28:2723–7.

    Article  CAS  PubMed  Google Scholar 

  47. Luckman M, Hans D, Cortez N, et al. Spine trabecular bone score as an indicator of bone microarchitecture at the peripheral skeleton in kidney transplant recipients. Clin J Am Soc Nephrol. 2017;12:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aleksova J, Kurniawan S, Elder GJ. The trabecular bone score is associated with bone mineral density, markers of bone turnover and prevalent fracture in patients with end stage kidney disease. Osteoporos Int. 2018;29:1447–55.

    Article  CAS  PubMed  Google Scholar 

  49. Bolotin HH. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone. 2007;41:138–54.

    Article  CAS  PubMed  Google Scholar 

  50. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27:119–24.

    Article  PubMed  Google Scholar 

  51. Jain RK, Vokes T. Association of trabecular bone score (TBS) and prior fracture differs among minorities in NHANES 2005-2008. Osteoporos Int. 2018;29:2093–9.

    Article  CAS  PubMed  Google Scholar 

  52. Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone. 2015;79:213–21.

    Article  CAS  PubMed  Google Scholar 

  53. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469:2179–93.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11:147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Agarwal S, Rosete F, Zhang C, et al. In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT. Osteoporos Int. 2016;27:2955–66.

    Article  CAS  PubMed  Google Scholar 

  56. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90:6508–15.

    Article  CAS  PubMed  Google Scholar 

  57. Bonaretti S, Vilayphiou N, Chan CM, et al. Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training. Osteoporos Int. 2017;28:245–57.

    Article  CAS  PubMed  Google Scholar 

  58. Boyd SK. Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom. 2008;11:424–30.

    Article  PubMed  Google Scholar 

  59. Ghasem-Zadeh A, Burghardt A, Wang XF, et al. Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions. Bone. 2017;101:206–13.

    Article  PubMed  Google Scholar 

  60. Bonaretti S, Majumdar S, Lang TF, Khosla S, Burghardt AJ. The comparability of HR-pQCT bone measurements is improved by scanning anatomically standardized regions. Osteoporos Int. 2017;28:2115–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat JB, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone. 2014;63:147–57.

    Article  PubMed  Google Scholar 

  62. Nishiyama KK, Pauchard Y, Nikkel LE, et al. Longitudinal HR-pQCT and image registration detects endocortical bone loss in kidney transplantation patients. J Bone Miner Res. 2015;30:554–61.

    Article  PubMed  CAS  Google Scholar 

  63. Engelke K, Stampa B, Timm W, et al. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int. 2012;23:2151–8.

    Article  CAS  PubMed  Google Scholar 

  64. Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone. 2012;50:111–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sode M, Burghardt AJ, Pialat JB, Link TM, Majumdar S. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone. 2011;48:1291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pauchard Y, Liphardt AM, Macdonald HM, Hanley DA, Boyd SK. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone. 2012;50:1304–10.

    Article  PubMed  Google Scholar 

  67. Pauchard Y, Ayres FJ, Boyd SK. Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography. Phys Med Biol. 2011;56:6523–43.

    Article  PubMed  Google Scholar 

  68. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.

    PubMed  Google Scholar 

  69. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone. 2007;41:505–15.

    Article  PubMed  Google Scholar 

  70. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010;47:519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu XS, Cohen A, Shane E, et al. Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res. 2010;25:1496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone. 1999;24:35–9.

    Article  CAS  PubMed  Google Scholar 

  73. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29:1096–105.

    Article  PubMed  Google Scholar 

  74. Liu XS, Zhang XH, Sekhon KK, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25:746–56.

    CAS  PubMed  Google Scholar 

  75. Krause M, Museyko O, Breer S, et al. Accuracy of trabecular structure by HR-pQCT compared to gold standard muCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteoporos Int. 2014;25:1595–606.

    Article  CAS  PubMed  Google Scholar 

  76. Tjong W, Nirody J, Burghardt AJ, Carballido-Gamio J, Kazakia GJ. Structural analysis of cortical porosity applied to HR-pQCT data. Med Phys. 2014;013701:41.

    Google Scholar 

  77. MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30:792–9.

    Article  PubMed  Google Scholar 

  78. Burghardt AJ, Pialat JB, Kazakia GJ, et al. Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res. 2013;28:524–36.

    Article  PubMed  Google Scholar 

  79. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21:124–31.

    Article  PubMed  Google Scholar 

  80. Laib A, Ruegsegger P. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph. 1999;23:69–74.

    Article  CAS  PubMed  Google Scholar 

  81. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72:1396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14:1167–74.

    Article  CAS  PubMed  Google Scholar 

  83. Hildebrand T, Ruegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185:67–75.

    Article  Google Scholar 

  84. Manske SL, Davison EM, Burt LA, Raymond DA, Boyd SK. The estimation of second-generation HR-pQCT from first-generation HR-pQCT using in vivo cross-calibration. J Bone Miner Res. 2017;32:1514–24.

    Article  PubMed  Google Scholar 

  85. Zebaze R, Seeman E. Cortical bone: a challenging geography. J Bone Miner Res. 2015;30:24–9.

    Article  PubMed  Google Scholar 

  86. Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.

    Article  PubMed  Google Scholar 

  87. Valentinitsch A, Patsch JM, Deutschmann J, et al. Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone. 2012;51:480–7.

    Article  PubMed  Google Scholar 

  88. Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone. 2013;54:8–20.

    Article  CAS  PubMed  Google Scholar 

  89. van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 1995;28:69–81.

    Article  PubMed  Google Scholar 

  90. Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int. 2013;24:1733–40.

    Article  CAS  PubMed  Google Scholar 

  91. Vico L, Zouch M, Amirouche A, et al. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res. 2008;23:1741–50.

    Article  PubMed  Google Scholar 

  92. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22:425–33.

    Article  PubMed  Google Scholar 

  93. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24:737–43.

    Article  PubMed  Google Scholar 

  94. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008;23:392–9.

    Article  PubMed  Google Scholar 

  95. Boutroy S, Khosla S, Sornay-Rendu E, et al. Microarchitecture and peripheral BMD are impaired in postmenopausal white women with fracture independently of total hip T-score: an International Multicenter Study. J Bone Miner Res. 2016;31:1158–66.

    Article  CAS  PubMed  Google Scholar 

  96. Melton LJ 3rd, Christen D, Riggs BL, et al. Assessing forearm fracture risk in postmenopausal women. Osteoporos Int. 2010;21:1161–9.

    Article  PubMed  Google Scholar 

  97. Rozental TD, Deschamps LN, Taylor A, et al. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J Bone Joint Surg Am. 2013;95:633–42.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stein EM, Liu XS, Nickolas TL, et al. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res. 2010;25:2572–81.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bala Y, Bui QM, Wang XF, et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res. 2015;30:621–9.

    Article  PubMed  Google Scholar 

  100. Ahmed LA, Shigdel R, Joakimsen RM, et al. Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporos Int. 2015;26:2137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Biver E, Durosier-Izart C, Chevalley T, van Rietbergen B, Rizzoli R, Ferrari S. Evaluation of radius microstructure and areal bone mineral density improves fracture prediction in postmenopausal women. J Bone Miner Res. 2018;33:328–37.

    Article  PubMed  Google Scholar 

  102. Langsetmo L, Peters KW, Burghardt AJ, et al. Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent HR-pQCT BMD and failure load predicts incident clinical fracture of FRAX and clinical risk factors among older men. J Bone Miner Res. 2018;33:1302–11.

    Article  CAS  PubMed  Google Scholar 

  103. Ohlsson C, Sundh D, Wallerek A, et al. Cortical bone area predicts incident fractures independently of areal bone mineral density in older men. J Clin Endocrinol Metab. 2017;102:516–24.

    Article  PubMed  Google Scholar 

  104. Samelson EJ, Broe KE, Xu H, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7:34–43.

    Article  PubMed  Google Scholar 

  105. Tsai JN, Bouxsein ML. Effects of antiresorptive therapy on bone microarchitecture. In: Silverman S, Abrahamsen B, editors. The duration and safety of osteoporosis treatment. Switzerland: Springer International Publishing; 2016. p. 141–52.

    Chapter  Google Scholar 

  106. Lespessailles E, Hambli R, Ferrari S. Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses. Bonekey Rep. 2016;5:836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25:2558–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rizzoli R, Chapurlat RD, Laroche JM, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int. 2012;23:305–15.

    Article  CAS  PubMed  Google Scholar 

  109. Seeman E, Delmas PD, Hanley DA, et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25:1886–94.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chapurlat RD, Laroche M, Thomas T, Rouanet S, Delmas PD, de Vernejoul MC. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial. Osteoporos Int. 2013;24:311–20.

    Article  CAS  PubMed  Google Scholar 

  111. Bala Y, Chapurlat R, Cheung AM, et al. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women. J Bone Miner Res. 2014;29:380–8.

    Article  CAS  PubMed  Google Scholar 

  112. Hansen S, Hauge EM, Beck Jensen JE, Brixen K. Differing effects of PTH 1-34, PTH 1-84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res. 2013;28:736–45.

    Article  CAS  PubMed  Google Scholar 

  113. Cheung AM, Majumdar S, Brixen K, et al. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength. J Bone Miner Res. 2014;29:1786–94.

    Article  CAS  PubMed  Google Scholar 

  114. Schafer AL, Burghardt AJ, Sellmeyer DE, et al. Postmenopausal women treated with combination parathyroid hormone (1-84) and ibandronate demonstrate different microstructural changes at the radius vs. tibia: the PTH and Ibandronate Combination Study (PICS). Osteoporos Int. 2013;24:2591–601.

    Article  CAS  PubMed  Google Scholar 

  115. Tsai JN, Uihlein AV, Burnett-Bowie SA, et al. Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT Study. J Bone Miner Res. 2015;30:39–45.

    Article  CAS  PubMed  Google Scholar 

  116. Tsai JN, Uihlein AV, Burnett-Bowie SM, et al. Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J Clin Endocrinol Metab. 2016;101:2023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsai JN, Nishiyama KK, Lin D, et al. Effects of denosumab and teriparatide transitions on bone microarchitecture and estimated strength: the DATA-Switch HR-pQCT study. J Bone Miner Res. 2017;32:2001–9.

    Article  CAS  PubMed  Google Scholar 

  118. Rizzoli R, Laroche M, Krieg MA, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int. 2010;30:1341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK. Sex- and site-specific normative data curves for HR-pQCT. J Bone Miner Res. 2016;31:2041–7.

    Article  PubMed  Google Scholar 

  120. Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging. 2007;25:390–409.

    Article  PubMed  Google Scholar 

  121. Han M, Chiba K, Banerjee S, Carballido-Gamio J, Krug R. Variable flip angle three-dimensional fast spin-echo sequence combined with outer volume suppression for imaging trabecular bone structure of the proximal femur. J Magn Reson Imaging. 2015;41:1300–10.

    Article  PubMed  Google Scholar 

  122. Chang G, Honig S, Brown R, et al. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology. 2014;272:464–74.

    Article  PubMed  Google Scholar 

  123. Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology. 2008;248:824–33.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD. In vivo quantitative MR imaging of bound and pore water in cortical bone. Radiology. 2015;277:927.

    Article  PubMed  Google Scholar 

  125. Chen J, Carl M, Ma Y, et al. Fast volumetric imaging of bound and pore water in cortical bone using three-dimensional ultrashort-TE (UTE) and inversion recovery UTE sequences. NMR Biomed. 2016;29:1373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li C, Seifert AC, Rad HS, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology. 2014;272:796–806.

    Article  PubMed  Google Scholar 

  127. Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology. 2015;276:526–35.

    Article  PubMed  Google Scholar 

  128. Folkesson J, Goldenstein J, Carballido-Gamio J, et al. Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women. Bone. 2011;48:611–21.

    Article  CAS  PubMed  Google Scholar 

  129. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16:1307–14.

    Article  PubMed  Google Scholar 

  130. Carballido-Gamio J, Folkesson J, Karampinos DC, et al. Generation of an atlas of the proximal femur and its application to trabecular bone analysis. Magn Reson Med. 2011;66:1181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chang G, Deniz CM, Honig S, et al. Feasibility of three-dimensional MRI of proximal femur microarchitecture at 3 tesla using 26 receive elements without and with parallel imaging. J Magn Reson Imaging. 2014;40:229–38.

    Article  PubMed  Google Scholar 

  132. Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging. 2005;21:818–25.

    Article  PubMed  Google Scholar 

  133. Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010;64:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kijowski R, Tuite M, Kruger D, Munoz Del Rio A, Kleerekoper M, Binkley N. Evaluation of trabecular microarchitecture in nonosteoporotic postmenopausal women with and without fracture. J Bone Miner Res. 2012;27:1494–500.

    Article  PubMed  Google Scholar 

  135. Greenspan SL, Perera S, Recker R, et al. Changes in trabecular microarchitecture in postmenopausal women on bisphosphonate therapy. Bone. 2010;46:1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Black DM, Bouxsein ML, Palermo L, et al. Randomized trial of once-weekly parathyroid hormone (1-84) on bone mineral density and remodeling. J Clin Endocrinol Metab. 2008;93:2166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wehrli FW, Ladinsky GA, Jones C, et al. In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res. 2008;23:730–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for Skeletal Research Imaging and Biomechanical Testing Core (NIH P30 AR066261) for kindly providing images used in Fig. 8.1 of this chapter.

Disclosure Summary

J.N.T. and S.K.R. have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy N. Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramchand, S.K., Tsai, J.N. (2020). New Imaging Techniques for Bone. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_8

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics