Skip to main content

Denosumab: Mechanisms and Therapeutic Effects in the Treatment of Osteoporosis

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor kappa-B ligand (RANKL), the principal regulator of osteoclastic bone resorption. By binding and neutralizing RANKL, it is a potent inhibitor of osteoclast differentiation, activity, and survival. For postmenopausal women with osteoporosis, treatment with 60 mg denosumab subcutaneously every 6 months for up to 10 years is associated with continuing increases in bone mineral density (BMD). Denosumab reduces the risk of vertebral fractures, nonvertebral fractures, and hip fractures with a generally favorable safety profile. Larger increases in total hip BMD are associated with greater reductions in the risk of new or worsening vertebral fractures. Atypical femur fractures and osteonecrosis of the jaw have been reported in patients treated with denosumab. There is no evidence that denosumab impairs fracture healing. BMD increases with denosumab are greater than with bisphosphonates. Discontinuation of denosumab is followed by a rapid decrease in BMD, a rise in bone turnover marker levels to above baseline, and a return of vertebral fracture risk to baseline with an apparent increase in the risk of multiple vertebral fractures. Patients who stop denosumab should be continued on treatment with another antiresorptive agent. Teriparatide after denosumab has been associated with bone loss. The combination of denosumab and teriparatide increases BMD more than either agent alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amgen Inc. Prolia prescribing information. 2018. Available from http://pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/prolia/prolia_pi.pdf. Accessed 9 Aug 2018.

  2. Amgen Inc. Xgeva prescribing information. 2018. Available from http://pi.amgen.com/united_states/xgeva/xgeva_pi.pdf. Accessed 5 May 2018.

  3. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  5. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  6. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66.

    Article  CAS  PubMed  Google Scholar 

  7. Black DM, Reid IR, Cauley JA, Cosman F, Leung PC, Lakatos P, et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2015;30(5):934–44.

    Article  CAS  PubMed  Google Scholar 

  8. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    Article  CAS  PubMed  Google Scholar 

  9. Peterson MC, Stouch BJ, Martin SW, Miller PD, McClung MR, Fitspatrick L. The pharmacokinetics of denosumab (AMG 162) following various multiple subcutaneous dosing regimens in postmenopausal women with low bone mass. J Bone Miner Res. 2005;20(Suppl 1):S293.

    Google Scholar 

  10. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23.

    Article  CAS  PubMed  Google Scholar 

  11. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350(12):1189–99.

    Article  CAS  PubMed  Google Scholar 

  12. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  13. Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92.

    Article  CAS  PubMed  Google Scholar 

  14. Zebaze RM, Libanati C, Austin M, Ghasem-Zadeh A, Hanley DA, Zanchetta JR, et al. Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone. 2014;59:173–9.

    Article  CAS  PubMed  Google Scholar 

  15. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256–65.

    Article  CAS  PubMed  Google Scholar 

  16. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, et al. Effects of long-term Denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103(7):2498–509.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low bone mineral density. J Bone Miner Res. 2007;22:1832–41.

    Article  CAS  PubMed  Google Scholar 

  18. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  19. Miller PD, Wagman RB, Peacock M, Lewiecki EM, Bolognese MA, Weinstein RL, et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J Clin Endocrinol Metab. 2011;96(2):394–402.

    Article  CAS  PubMed  Google Scholar 

  20. McClung MR, Lewiecki EM, Geller ML, Bolognese MA, Peacock M, Weinstein RL, et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. Osteoporos Int. 2013;24(1):227–35.

    Article  CAS  PubMed  Google Scholar 

  21. Austin M, Yang YC, Vittinghoff E, Adami S, Boonen S, Bauer DC, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res. 2012;27(3):687–93.

    Article  CAS  PubMed  Google Scholar 

  22. Cummings SR, Cosman F, Lewiecki EM, Schousboe JT, Bauer DC, Black DM, et al. Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J Bone Miner Res. 2017;32(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  23. Adami S, Libanati C, Boonen S, Cummings SR, Ho PR, Wang A, et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am. 2012;94(23):2113–9.

    Article  PubMed  Google Scholar 

  24. Papapoulos S, Chapurlat R, Libanati C, Brandi ML, Brown JP, Czerwinski E, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J Bone Miner Res. 2012;27(3):694–701.

    Article  CAS  PubMed  Google Scholar 

  25. Papapoulos S, Lippuner K, Roux C, Lin CJ, Kendler DL, Lewiecki EM, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM extension study. Osteoporos Int. 2015;26(12):2773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orwoll E, Teglbjaerg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, et al. A randomized, placebo-controlled study of the effects of Denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab. 2012;97(9):3161–9.

    Article  CAS  PubMed  Google Scholar 

  27. Langdahl BL, Teglbjaerg CS, Ho PR, Chapurlat R, Czerwinski E, Kendler DL, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015;100(4):1335–42.

    Article  CAS  PubMed  Google Scholar 

  28. Saag KG, Wagman RB, Geusens P, Adachi JD, Messina OD, Emkey R, et al. Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol. 2018;6(6):445–54.

    Article  CAS  PubMed  Google Scholar 

  29. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  CAS  PubMed  Google Scholar 

  30. Stolina M, Dwyer D, Ominsky MS, Corbin T, Van G, Bolon B, et al. Continuous RANKL inhibition in osteoprotegerin transgenic mice and rats suppresses bone resorption without impairing lymphorganogenesis or functional immune responses. J Immunol. 2007;179(11):7497–505.

    Article  CAS  PubMed  Google Scholar 

  31. Stolina M, Kostenuik PJ, Dougall WC, Fitzpatrick LA, Zack DJ. RANKL inhibition: from mice to men (and women). Adv Exp Med Biol. 2007;602:143–50.

    Article  PubMed  Google Scholar 

  32. Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S, et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int. 2012;23:327–37.

    Article  CAS  PubMed  Google Scholar 

  33. Watts NB, Brown JP, Papapoulos S, Lewiecki EM, Kendler DL, Dakin P, et al. Safety observations with 3 years of Denosumab exposure: comparison between subjects who received Denosumab during the randomized FREEDOM trial and subjects who crossed over to Denosumab during the FREEDOM extension. J Bone Miner Res. 2017;32(7):1481–5.

    Article  CAS  PubMed  Google Scholar 

  34. Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev. 2005;208:228–51.

    Article  CAS  PubMed  Google Scholar 

  35. Dubrovsky AM, Lim MJ, Lane NE. Osteoporosis in rheumatic diseases: anti-rheumatic drugs and the skeleton. Calcif Tissue Int. 2018;102(5):607–18.

    Article  CAS  PubMed  Google Scholar 

  36. Weinblatt M, Schiff M, Goldman A, Kremer J, Luggen M, Li T, et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis. 2007;66(2):228–34.

    Article  CAS  PubMed  Google Scholar 

  37. Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 2004;50(5):1412–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008;58(5):1299–309.

    Article  CAS  PubMed  Google Scholar 

  39. Curtis JR, Xie F, Yun H, Saag KG, Chen L, Delzell E. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol. 2015;67(6):1456–64.

    Article  CAS  PubMed  Google Scholar 

  40. Selga J, Nunez JH, Minguell J, Lalanza M, Garrido M. Simultaneous bilateral atypical femoral fracture in a patient receiving denosumab: case report and literature review. Osteoporos Int. 2016;27(2):827–32.

    Article  CAS  PubMed  Google Scholar 

  41. Khow KS, Yong TY. Atypical femoral fracture in a patient treated with denosumab. J Bone Miner Metab. 2015;33(3):355–8.

    Article  CAS  PubMed  Google Scholar 

  42. Schilcher J, Aspenberg P. Atypical fracture of the femur in a patient using denosumab--a case report. Acta Orthop. 2014;85(1):6–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aspenberg P. Denosumab and atypical femoral fractures. Acta Orthop. 2014;85(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cating-Cabral MT, Clarke BL. Denosumab and atypical femur fractures. Maturitas. 2013;76(1):1–2.

    Article  PubMed  Google Scholar 

  45. Boquete-Castro A, Gomez-Moreno G, Calvo-Guirado JL, Aguilar-Salvatierra A, Delgado-Ruiz RA. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clin Oral Implants Res. 2016;27(3):367–75.

    Article  PubMed  Google Scholar 

  46. Ungprasert P, Cheungpasitporn W, Srivali N, Kittanamongkolchai W, Bischof EF. Life-threatening hypocalcemia associated with denosumab in a patient with moderate renal insufficiency. Am J Emerg Med. 2013;31(4):756 e1–2.

    Article  Google Scholar 

  47. Talreja DB. Severe hypocalcemia following a single injection of denosumab in a patient with renal impairment. J Drug Assess. 2012;1(1):30–3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  49. Kendler DL, Roux C, Benhamou CL, Brown JP, Lillestol M, Siddhanti S, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res. 2010;25(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  50. Roux C, Hofbauer LC, Ho PR, Wark JD, Zillikens MC, Fahrleitner-Pammer A, et al. Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: efficacy and safety results from a randomized open-label study. Bone. 2014;58:48–54.

    Article  CAS  PubMed  Google Scholar 

  51. Recknor C, Czerwinski E, Bone HG, Bonnick SL, Binkley N, Palacios S, et al. Denosumab compared with ibandronate in postmenopausal women previously treated with bisphosphonate therapy: a randomized open-label trial. Obstet Gynecol. 2013;121(6):1291–9.

    Article  CAS  PubMed  Google Scholar 

  52. Brown JP, Roux C, Ho PR, Bolognese MA, Hall J, Bone HG, et al. Denosumab significantly increases bone mineral density and reduces bone turnover compared with monthly oral ibandronate and risedronate in postmenopausal women who remained at higher risk for fracture despite previous suboptimal treatment with an oral bisphosphonate. Osteoporos Int. 2014;25(7):1953–61.

    CAS  PubMed  Google Scholar 

  53. Miller PD, Pannacciulli N, Brown JP, Czerwinski E, Nedergaard BS, Bolognese MA, et al. Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab. 2016;101(8):3163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet. 2013;382(9886):50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leder BZ, Tsai JN, Uihlein AV, Burnett-Bowie SA, Zhu Y, Foley K, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (the DATA extension study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99(5):1694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2010;95(4):1838–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349(13):1216–26.

    Article  CAS  PubMed  Google Scholar 

  58. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet. 2015;386(9999):1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  60. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O. Clinical features of 24 patients with rebound-associated vertebral fractures after Denosumab discontinuation: systematic review and additional cases. J Bone Miner Res. 2017;32(6):1291–6.

    Article  CAS  PubMed  Google Scholar 

  61. Lamy O, Gonzalez-Rodriguez E, Stoll D, Hans D, Aubry-Rozier B. Severe rebound-associated vertebral fractures after Denosumab discontinuation: 9 clinical cases report. J Clin Endocrinol Metab. 2017;102(2):354–8.

    Article  PubMed  Google Scholar 

  62. Popp AW, Zysset PK, Lippuner K. Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos Int. 2016;27(5):1917–21.

    Article  CAS  PubMed  Google Scholar 

  63. Aubry-Rozier B, Gonzalez-Rodriguez E, Stoll D, Lamy O. Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporos Int. 2016;27(5):1923–5.

    Article  CAS  PubMed  Google Scholar 

  64. Cummings SR, Ferrari S, Eastell R, Gilchrist N, Jensen JB, McClung M, et al. Vertebral fractures after discontinuation of Denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res. 2018;33(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  65. McClung MR. Cancel the denosumab holiday. Osteoporos Int. 2016;27(5):1677–82.

    Article  CAS  PubMed  Google Scholar 

  66. Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guanabens N, et al. Discontinuation of Denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone. 2017;105:11–7.

    Article  PubMed  Google Scholar 

  67. Freemantle N, Satram-Hoang S, Tang ET, Kaur P, Macarios D, Siddhanti S, et al. Final results of the DAPS (Denosumab adherence preference satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int. 2012;23(1):317–26.

    Article  CAS  PubMed  Google Scholar 

  68. Reid IR, Horne AM, Mihov B, Gamble GD. Bone loss after Denosumab: only partial protection with zoledronate. Calcif Tissue Int. 2017;101(4):371–4.

    Article  CAS  PubMed  Google Scholar 

  69. Horne AM, Mihov B, Reid IR. Bone loss after Romosozumab/Denosumab: effects of bisphosphonates. Calcif Tissue Int. 2018;103(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  70. Leder BZ, Tsai JN, Jiang LA, Lee H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: the Denosumab and teriparatide follow-up study (DATA-follow-up). Bone. 2017;98:54–8.

    Article  CAS  PubMed  Google Scholar 

  71. Boyce AM. Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep. 2017;15(4):283–92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

The author has received institutional grant/research support from Amgen, PFEnex, and Mereo; he has served on scientific advisory boards for Amgen, Radius, Shire, Alexion, Ultragenyx, and Sandoz; he serves on the speakers’ bureau for Shire, Alexion, and Radius; he is a board member of the National Osteoporosis Foundation, International Society for Clinical Densitometry, and Osteoporosis Foundation of New Mexico.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewiecki, E.M. (2020). Denosumab: Mechanisms and Therapeutic Effects in the Treatment of Osteoporosis. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_15

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics