Skip to main content

Exercise in the Prevention of Osteoporosis-Related Fractures

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The prevention of osteoporotic fracture by exercise intervention requires a two-pronged approach, that is, the maximization of bone strength and the minimization of falls. Intense animal and human research activity over the last 30 years has generated a wealth of evidence that has led to a recommended exercise prescription for optimizing bone health. The incorporation of exercise as a fracture prevention strategy should commence before peak bone mass has been attained and continue throughout life, and can be enhanced by adequate calcium consumption. Osteogenic exercise follows certain training principles, including site specificity, requirement for overload, reversibility, and greatest efficacy in the weakest bones. The minimally effective exercise regime would consist of twice-weekly, high-intensity, weight-bearing impact loading, and resistance training; however, a precise optimum dose remains to be determined. Falls present a formidable risk to an osteoporotic skeleton; therefore, neuromuscular strength training and balance training strategies should be incorporated in exercise programs to minimize fracture risk, particularly in old age. Although trials with fractures as an outcome have been limited, there is a growing body of indirect evidence that supports exercise as a powerful strategy to reduce the incidence of osteoporotic fracture. While exercise appears to be a safe and effective fracture prevention approach, future work must identify strategies that promote the adoption and uptake of osteogenic exercise across the life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci (Lond). 1983;64(5):537–40.

    Article  CAS  Google Scholar 

  2. Donaldson CL, et al. Effect of prolonged bed rest on bone mineral. Metabolism. 1970;19(12):1071–84.

    Article  CAS  PubMed  Google Scholar 

  3. Tilton FE, Degioanni JJ, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med. 1980;51(11):1209–13.

    CAS  PubMed  Google Scholar 

  4. Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.

    Article  PubMed  Google Scholar 

  5. Leblanc AD, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.

    Article  CAS  PubMed  Google Scholar 

  6. Rabin R, et al. Effects of spaceflight on the musculoskeletal system: NIH and NASA future directions. FASEB J. 1993;7(5):396–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lang TF, et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.

    Article  PubMed  Google Scholar 

  8. Courtney AC, et al. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int. 1994;55(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  9. Courtney AC, et al. Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am. 1995;77(3):387–95.

    Article  CAS  PubMed  Google Scholar 

  10. Hayes WC, et al. Etiology and prevention of age-related hip fractures. Bone. 1996;18(1 Suppl):77S–86S.

    Article  CAS  PubMed  Google Scholar 

  11. Moro M, et al. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int. 1995;56(3):206–9.

    Article  CAS  PubMed  Google Scholar 

  12. Myers ER, et al. Correlations of the failure load of the femur with densitometric and geometric properties from QDR. Transactions of the 38th Annual Meeting of the Orthopaedic Research Society; 1992, p. 115.

    Google Scholar 

  13. Myers ER, et al. Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcif Tissue Int. 1991;49(4):292–7.

    Article  CAS  PubMed  Google Scholar 

  14. Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  15. Marshall LM, et al. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res. 2006;21(8):1197–206.

    Article  PubMed  Google Scholar 

  16. Ashe MC, et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int. 2006;17(8):1241–51.

    Article  CAS  PubMed  Google Scholar 

  17. Brodt MD, et al. Accuracy of peripheral quantitative computed tomography (pQCT) for assessing area and density of mouse cortical bone. Calcif Tissue Int. 2003;73(4):411–8.

    Article  CAS  PubMed  Google Scholar 

  18. Di Leo C, et al. Peripheral quantitative computed tomography (PQCT) in the evaluation of bone geometry, biomechanics and mineral density in postmenopausal women. Radiol Med (Torino). 2002;103(3):233–41.

    Google Scholar 

  19. Jiang Y, et al. Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res. 1998;13(11):1783–90.

    Article  CAS  PubMed  Google Scholar 

  20. Moisio KC, et al. pQCT provides better prediction of canine femur breaking load than does DXA. J Musculoskelet Neuronal Interact. 2003;3(3):240–5.

    CAS  PubMed  Google Scholar 

  21. Siu WS, Qin L, Leung KS. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab. 2003;21(5):316–22.

    Article  PubMed  Google Scholar 

  22. Wosje KS, Binkley TL, Specker BL. Comparison of bone parameters by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography in Hutterite vs. non-Hutterite women aged 35-60 years. Bone. 2001;29(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  23. Sakata S, et al. Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res. 2004;19(6):924–30.

    Article  PubMed  Google Scholar 

  24. Hong J, et al. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int. 2000;66(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  25. Weeks BK, Beck BR. The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int. 2008;19(11):1567–77.

    Article  CAS  PubMed  Google Scholar 

  26. Drinkwater BL. 1994 C. H. McCloy Research Lecture: does physical activity play a role in preventing osteoporosis? Res Q Exerc Sport. 1994;65(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  27. Korpelainen R, et al. Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int. 2006;17(1):109–18.

    Article  PubMed  Google Scholar 

  28. Carter DR. Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int. 1984;36(Suppl 1):S19–24.

    Article  PubMed  Google Scholar 

  29. Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int. 2000;66(6):399–404.

    Article  CAS  PubMed  Google Scholar 

  30. Watson SL, et al. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR Randomized Controlled Trial. J Bone Miner Res. 2018;33(2):211–20.

    Article  PubMed  Google Scholar 

  31. Kerr D, et al. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996;11(2):218–25.

    Article  CAS  PubMed  Google Scholar 

  32. Cussler EC, et al. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003;35(1):10–7.

    Article  PubMed  Google Scholar 

  33. Jamsa T, et al. Effect of daily physical activity on proximal femur. Clin Biomech (Bristol, Avon). 2006;21(1):1–7.

    Article  Google Scholar 

  34. Dalsky GP, et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988;108(6):824–8.

    Article  CAS  PubMed  Google Scholar 

  35. Snow CM, et al. Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2000;55(9):M489–91.

    Article  CAS  PubMed  Google Scholar 

  36. Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000;15(12):2495–503.

    Article  CAS  PubMed  Google Scholar 

  37. Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002;141(3):357–62.

    Article  PubMed  Google Scholar 

  38. Nogueira RC, Weeks BK, Beck B. One-year follow-up of the CAPO Kids Trial: are physical benefits maintained? Pediatr Exerc Sci. 2017;29(4):486–95.

    Article  PubMed  Google Scholar 

  39. Weeks BK, Beck BR. Are bone and muscle changes from POWER PE, an 8-month in-school jumping intervention, maintained at three years? PLoS One. 2012;7(6):e39133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kannus P, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  41. Beck BR. Exercise for bone in childhood-hitting the sweet spot. Pediatr Exerc Sci. 2017;29(4):440–9.

    Article  PubMed  Google Scholar 

  42. Warden SJ, et al. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22(2):251–9.

    Article  PubMed  Google Scholar 

  43. Winters-Stone KM, Snow CM. Musculoskeletal response to exercise is greatest in women with low initial values. Med Sci Sports Exerc. 2003;35(10):1691–6.

    Article  PubMed  Google Scholar 

  44. Chien MY, et al. Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int. 2000;67(6):443–8.

    Article  CAS  PubMed  Google Scholar 

  45. Iwamoto J, et al. Effect of increased physical activity on bone mineral density in postmenopausal osteoporotic women. Keio J Med. 1998;47(3):157–61.

    Article  CAS  PubMed  Google Scholar 

  46. Kohrt WM, Ehsani AA, Birge SJ Jr. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res. 1997;12(8):1253–61.

    Article  CAS  PubMed  Google Scholar 

  47. Hatori M, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int. 1993;52(6):411–4.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson ME, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA. 1994;272(24):1909–14.

    Article  CAS  PubMed  Google Scholar 

  49. Taaffe DR, et al. High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res. 1997;12(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int. 2015;26(5):1605–18.

    Article  CAS  PubMed  Google Scholar 

  51. Cummings SR. How drugs decrease fracture risk: lessons from trials. J Musculoskelet Neuronal Interact. 2002;2(3):198–200.

    CAS  PubMed  Google Scholar 

  52. Robling AG, et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54.

    Article  PubMed  Google Scholar 

  53. Raab DM, et al. Bone mechanical properties after exercise training in young and old rats. J Appl Physiol. 1990;68(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  54. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int. 1992;50(4):306–13.

    Article  CAS  PubMed  Google Scholar 

  55. Bassey EJ, et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise [see comments]. J Bone Miner Res. 1998;13(12):1805–13.

    Article  CAS  PubMed  Google Scholar 

  56. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  57. Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res. 1994;(298):165–74.

    Google Scholar 

  58. O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech. 1982;15(10):767–81.

    Article  PubMed  Google Scholar 

  59. Gross TS, et al. Strain gradients correlate with sites of periosteal bone formation. J Bone Miner Res. 1997;12(6):982–8.

    Article  CAS  PubMed  Google Scholar 

  60. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  61. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50.

    Article  PubMed  Google Scholar 

  62. Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res. 2001;16(5):918–24.

    Article  CAS  PubMed  Google Scholar 

  63. Rockwell JC, et al. Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Metab. 1990;71(4):988–93.

    Article  CAS  PubMed  Google Scholar 

  64. Nelson ME, et al. A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr. 1991;53(5):1304–11.

    Article  CAS  PubMed  Google Scholar 

  65. Snow-Harter C, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res. 1992;7(7):761–9.

    Article  CAS  PubMed  Google Scholar 

  66. Umemura Y, et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12(9):1480–5.

    Article  CAS  PubMed  Google Scholar 

  67. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204(Pt 19):3389–99.

    CAS  PubMed  Google Scholar 

  68. Fuchs RK, Williams DP, Snow C. Response of growing bones to a jumping protocol of reduced repetitions: a randomized controlled trial. J Bone Miner Res. 2001;16(S1):S203.

    Article  CAS  PubMed  Google Scholar 

  69. Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int. 1994;4(2):72–5.

    Article  CAS  PubMed  Google Scholar 

  70. Kato T, et al. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol. 2006;100(3):839–43.

    Article  PubMed  Google Scholar 

  71. Heinonen A, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet. 1996;348(9038):1343–7.

    Article  CAS  PubMed  Google Scholar 

  72. Vainionpaa A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int. 2006;17(3):455–63.

    Article  CAS  PubMed  Google Scholar 

  73. Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention. Bone. 2010;46(4):1043–9.

    Article  PubMed  Google Scholar 

  74. NIH Consensus Development Panel on Osteoporosis Prevention, D., and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  75. Weaver CM, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Courteix D, et al. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact- loading sports. Osteoporos Int. 1998;8(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  77. Bass S, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  78. Grimston SK, Willows ND, Hanley DA. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc. 1993;25(11):1203–10.

    CAS  PubMed  Google Scholar 

  79. Bailey DA, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9.

    Article  CAS  PubMed  Google Scholar 

  80. Boot AM, et al. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 1997;82(1):57–62.

    CAS  PubMed  Google Scholar 

  81. Duppe H, et al. Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15–42 years. Acta Orthop Scand. 1997;68(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  82. Gunnes M, Lehmann EH. Physical activity and dietary constituents as predictors of forearm cortical and trabecular bone gain in healthy children and adolescents: a prospective study. Acta Paediatr. 1996;85(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  83. Tsai SC, Kao CH, Wang SJ. Comparison of bone mineral density between athletic and non-athletic Chinese male adolescents. Kaohsiung J Med Sci. 1996;12(10):573–80.

    CAS  PubMed  Google Scholar 

  84. Welten DC, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res. 1994;9(7):1089–96.

    Article  CAS  PubMed  Google Scholar 

  85. Haapasalo H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res. 1998;13(2):310–9.

    Article  CAS  PubMed  Google Scholar 

  86. Nordstrom P, et al. Local bone mineral density, muscle strength, and exercise in adolescent boys: a comparative study of two groups with different muscle strength and exercise levels. Calcif Tissue Int. 1996;58(6):402–8.

    Article  CAS  PubMed  Google Scholar 

  87. Rico H, et al. Influence of weight and seasonal changes and radiogrammetry and bone densitometry. Calcif Tissue Int. 1994;54:385–8.

    Article  CAS  PubMed  Google Scholar 

  88. Dalen N, et al. The effect of athletic activity on the bone mass in human diaphyseal bone. Orthopedics. 1985;8(9):1139–41.

    CAS  PubMed  Google Scholar 

  89. Haapasalo H, et al. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res. 1996;11(6):864–72.

    Article  CAS  PubMed  Google Scholar 

  90. Moyer-Mileur L, et al. Effect of physical activity on bone mineralization in premature infants. J Pediatr. 1995;127(4):620–5.

    Article  CAS  PubMed  Google Scholar 

  91. Litmanovitz I, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics. 2003;112(1 Pt 1):15–9.

    Article  PubMed  Google Scholar 

  92. Specker BL, Mulligan L, Ho M. Longitudinal study of calcium intake, physical activity, and bone mineral content in infants 6–18 months of age. J Bone Miner Res. 1999;14(4):569–76.

    Article  CAS  PubMed  Google Scholar 

  93. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18(5):885–92.

    Article  CAS  PubMed  Google Scholar 

  94. Specker B, Binkley T, Fahrenwald N. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone. 2004;35(6):1383–8.

    Article  PubMed  Google Scholar 

  95. Johannsen N, et al. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33(4):533–9.

    Article  PubMed  Google Scholar 

  96. McKay HA, et al. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000;136(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  97. Morris FL, et al. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12(9):1453–62.

    Article  CAS  PubMed  Google Scholar 

  98. MacKelvie KJ, et al. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112(6 Pt 1):e447.

    Article  PubMed  Google Scholar 

  99. Petit MA, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):363–72.

    Article  CAS  PubMed  Google Scholar 

  100. Fuchs R, Bauer J, Snow C. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  101. Nogueira RC, Weeks BK, Beck BR. An in-school exercise intervention to enhance bone and reduce fat in girls: the CAPO Kids trial. Bone. 2014;68:92–9.

    Article  PubMed  Google Scholar 

  102. Nogueira RC, Weeks BK, Beck BR. Targeting bone and fat with novel exercise for peripubertal boys: the CAPO kids trial. Pediatr Exerc Sci. 2015;27(1):128–39.

    Article  PubMed  Google Scholar 

  103. Bradney M, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):1814–21.

    Article  CAS  PubMed  Google Scholar 

  104. MacKelvie KJ, et al. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34(4):755–64.

    Article  PubMed  Google Scholar 

  105. Weeks BK, Young CM, Beck BR. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and girls: the POWER PE study. J Bone Miner Res. 2008;23(7):1002–11.

    Article  PubMed  Google Scholar 

  106. Mackelvie KJ, et al. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139(4):501–8.

    Article  CAS  PubMed  Google Scholar 

  107. Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr. 2001;139(4):494–500.

    Article  CAS  PubMed  Google Scholar 

  108. Heinonen A, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11(12):1010–7.

    Article  CAS  PubMed  Google Scholar 

  109. Madsen KL, Adams WC, Van Loan MD. Effects of physical activity, body weight and composition, and muscular strength on bone density in young women. Med Sci Sports Exerc. 1998;30(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  110. Pettersson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64(6):490–8.

    Article  CAS  PubMed  Google Scholar 

  111. Karlsson MK, Hasserius R, Obrant KJ. Bone mineral density in athletes during and after career: a comparison between loaded and unloaded skeletal regions. Calcif Tissue Int. 1996;59:245–8.

    Article  CAS  PubMed  Google Scholar 

  112. Bennell KL, et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone. 1997;20(5):477–84.

    Article  CAS  PubMed  Google Scholar 

  113. Brahm H, et al. Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int. 1997;61(6):448–54.

    Article  CAS  PubMed  Google Scholar 

  114. Wittich A, et al. Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int. 1998;63(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  115. Uusi-Rasi K, et al. Associations of physical activity and calcium intake with bone mass and size in healthy women at different ages. J Bone Miner Res. 1998;13(1):133–42.

    Article  CAS  PubMed  Google Scholar 

  116. Tsuzuku S, Ikegami Y, Yabe K. Effects of high-intensity resistance training on bone mineral density in young male powerlifters. Calcif Tissue Int. 1998;63(4):283–6.

    Article  CAS  PubMed  Google Scholar 

  117. Snow-Harter C, et al. Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res. 1992;7(11):1291–6.

    Article  CAS  PubMed  Google Scholar 

  118. Sone T, et al. Influence of exercise and degenerative vertebral changes on BMD: a cross-sectional study in Japanese men. Gerontology. 1996;42(Suppl. 1):57–66.

    Article  PubMed  Google Scholar 

  119. Calbet JA, et al. Bone mineral content and density in professional tennis players. Calcif Tissue Int. 1998;62(6):491–6.

    Article  CAS  PubMed  Google Scholar 

  120. Colletti LA, et al. The effects of muscle-building exercise on bone mineral density of the radius, spine, and hip in young men. Calcif Tissue Int. 1989;45:12–4.

    Article  CAS  PubMed  Google Scholar 

  121. Karlsson MK, Johnell O, Obrant KJ. Bone mineral density in weight lifters. Calcif Tissue Int. 1993;52(3):212–5.

    Article  CAS  PubMed  Google Scholar 

  122. Mayoux-Benhamou MA, et al. Cross-sectional study of weight-bearing activity on proximal femur bone mineral density. Calcif Tissue Int. 1999;64(2):179–83.

    Article  CAS  PubMed  Google Scholar 

  123. Block JE, Genant HK, Black D. Greater vertebral bone mineral mass in exercising young men. West J Med. 1986;145(1):39–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Block JE, et al. Determinants of bone density among athletes engaged in weight-bearing and non-weight-bearing activity. J Appl Physiol (1985). 1989;67(3):1100–5.

    Article  CAS  Google Scholar 

  125. Need AG, et al. Effect of physical activity on femoral bone density in men. BMJ. 1995;310(6993):1501–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nilsson BE, Westlin NE. Bone density in athletes. Clin Orthop Relat Res. 1971;77:179–82.

    CAS  PubMed  Google Scholar 

  127. Leichter I, et al. Gain in mass density of bone following strenuous physical activity. J Orthop Res. 1989;7:86–90.

    Article  CAS  PubMed  Google Scholar 

  128. MacDougall JD, et al. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol (1985). 1992;73(3):1165–70.

    Article  CAS  Google Scholar 

  129. Hutchinson TM, et al. Factors in daily physical activity related to calcaneal mineral density in men. Med Sci Sports Exerc. 1995;27(5):745–50.

    Article  CAS  PubMed  Google Scholar 

  130. Suominen H, Rahkila P. Bone mineral density of the calcaneus in 70- to 81-yr-old male athletes and a population sample. Med Sci Sports Exerc. 1991;23(11):1227–33.

    Article  CAS  PubMed  Google Scholar 

  131. Aloia JF, et al. Skeletal mass and body composition in marathon runners. Metabolism. 1978;27(12):1793–6.

    Article  CAS  PubMed  Google Scholar 

  132. Flodgren G, Hedelin R, Henriksson-Larsen K. Bone mineral density in flatwater sprint kayakers. Calcif Tissue Int. 1999;64(5):374–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hamdy RC, et al. Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc. 1994;26(7):884–8.

    Article  CAS  PubMed  Google Scholar 

  134. Myburgh KH, et al. Influence of recreational activity and muscle strength on ulnar bending stiffness in men. Med Sci Sports Exerc. 1993;25(5):592–6.

    Article  CAS  PubMed  Google Scholar 

  135. Dalen N, Olsson KE. Bone mineral content and physical activity. Acta Orthop Scand. 1974;45(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  136. Michel BA, Bloch DA, Fries JF. Weight-bearing exercise, overexercise, and lumbar bone density over age 50 years. Arch Intern Med. 1989;149(10):2325–9.

    Article  CAS  PubMed  Google Scholar 

  137. Taaffe DR, et al. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res. 1995;10(4):586–93.

    Article  CAS  PubMed  Google Scholar 

  138. Orwoll ES, et al. The relationship of swimming exercise to bone mass in men and women. Arch Intern Med. 1989;149(10):2197–200.

    Article  CAS  PubMed  Google Scholar 

  139. Ashizawa N, et al. Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD. J Appl Physiol. 1999;86(4):1347–51.

    Article  CAS  PubMed  Google Scholar 

  140. Krahl H, et al. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med. 1994;22(6):751–7.

    Article  CAS  PubMed  Google Scholar 

  141. Smith R, Rutherford OM. Spine and total body bone mineral density and serum testosterone levels in male athletes. Eur J Appl Physiol Occup Physiol. 1993;67(4):330–4.

    Article  CAS  PubMed  Google Scholar 

  142. Beck BR, Doecke JD. Seasonal bone mass of college and senior female field hockey players. J Sports Med Phys Fitness. 2005;45(3):347–54.

    CAS  PubMed  Google Scholar 

  143. Ryan AS, Elahi D. Loss of bone mineral density in women athletes during aging. Calcif Tissue Int. 1998;63(4):287–92.

    Article  CAS  PubMed  Google Scholar 

  144. Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int. 1995;57:325–8.

    Article  PubMed  Google Scholar 

  145. Glynn NW, et al. Determinants of bone mineral density in older men. J Bone Miner Res. 1995;10(11):1769–77.

    Article  CAS  PubMed  Google Scholar 

  146. Ulrich CM, et al. Lifetime physical activity is associated with bone mineral density in premenopausal women. J Women’s Health. 1999;8(3):365–75.

    Article  CAS  Google Scholar 

  147. Greendale GA, et al. Lifetime leisure exercise and osteoporosis. The Rancho Bernardo study. Am J Epidemiol. 1995;141(10):951–9.

    Article  CAS  PubMed  Google Scholar 

  148. Pollock ML, et al. Twenty-year follow-up of aerobic power and body composition of older track athletes. J Appl Physiol (1985). 1997;82(5):1508–16.

    Article  CAS  Google Scholar 

  149. Cummings SR, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332(12):767–73.

    Article  CAS  PubMed  Google Scholar 

  150. Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA. 2002;288(18):2300–6.

    Article  PubMed  Google Scholar 

  151. Joakimsen RM, et al. The Tromso Study: physical activity and the incidence of fractures in a middle-aged population. J Bone Miner Res. 1998;13(7):1149–57.

    Article  CAS  PubMed  Google Scholar 

  152. Stattin K, et al. Leisure-time physical activity and risk of fracture: a cohort study of 66,940 men and women. J Bone Miner Res. 2017;32(8):1599–606.

    Article  PubMed  Google Scholar 

  153. Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18(11):827–35.

    Article  PubMed  Google Scholar 

  154. Qu X, et al. Association between physical activity and risk of fracture. J Bone Miner Res. 2014;29(1):202–11.

    Article  PubMed  Google Scholar 

  155. Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010;28(3):251–67.

    Article  PubMed  Google Scholar 

  156. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2013;2013:741639.

    PubMed  PubMed Central  Google Scholar 

  157. Friedlander AL, et al. A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res. 1995;10(4):574–85.

    Article  CAS  PubMed  Google Scholar 

  158. Heinonen A, et al. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women. J Bone Miner Res. 1996;11(4):490–501.

    Article  CAS  PubMed  Google Scholar 

  159. Lohman T, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res. 1995;10(7):1015–24.

    Article  CAS  PubMed  Google Scholar 

  160. Snow CM, et al. Bone gains and losses follow seasonal training and detraining in gymnasts. Calcif Tissue Int. 2001;69(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  161. Vainionpaa A, et al. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int. 2005;16(2):191–7.

    Article  PubMed  Google Scholar 

  162. Martyn-St James M, Carroll S. Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med. 2006;36(8):683–704.

    Article  PubMed  Google Scholar 

  163. Dornemann TM, et al. Effects of high-intensity resistance exercise on bone mineral density and muscle strength of 40-50-year-old women. J Sports Med Phys Fitness. 1997;37(4):246–51.

    CAS  PubMed  Google Scholar 

  164. Heinonen A, et al. Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res. 1998;13(3):483–90.

    Article  CAS  PubMed  Google Scholar 

  165. Maddalozzo GF, et al. The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone. 2007;40(5):1244–51.

    Article  CAS  PubMed  Google Scholar 

  166. Cussler EC, et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int. 2005;16(12):2129–41.

    Article  CAS  PubMed  Google Scholar 

  167. Revel M, et al. One-year psoas training can prevent lumbar bone loss in postmenopausal women: a randomized controlled trial. Calcif Tissue Int. 1993;53(5):307–11.

    Article  CAS  PubMed  Google Scholar 

  168. Smidt GL, et al. The effect of high-intensity trunk exercise on bone mineral density of postmenopausal women. Spine. 1992;17(3):280–5.

    Article  CAS  PubMed  Google Scholar 

  169. Engelke K, et al. Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int. 2006;17(1):133–42.

    Article  CAS  PubMed  Google Scholar 

  170. Pruitt LA, et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res. 1992;7(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  171. Pruitt LA, Taaffe DR, Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res. 1995;10(11):1788–95.

    Article  CAS  PubMed  Google Scholar 

  172. Sinaki M, et al. Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: a controlled trial. Mayo Clin Proc. 1989;64(7):762–9.

    Article  CAS  PubMed  Google Scholar 

  173. Bassey EJ, Ramsdale SJ. Weight-bearing exercise and ground reaction forces: a 12-month randomized controlled trial of effects on bone mineral density in healthy postmenopausal women. Bone. 1995;16(4):469–76.

    CAS  PubMed  Google Scholar 

  174. Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2012;13:177.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Howe TE, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011;(7):CD000333.

    Google Scholar 

  176. Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006;17(8):1225–40.

    Article  CAS  PubMed  Google Scholar 

  177. Welsh L, Rutherford OM. Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years. Eur J Appl Physiol Occup Physiol. 1996;74(6):511–7.

    Article  CAS  PubMed  Google Scholar 

  178. Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc. 1992;24(11):1190–4.

    CAS  PubMed  Google Scholar 

  179. Krolner B, et al. Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci (Lond). 1983;64(5):541–6.

    Article  CAS  Google Scholar 

  180. Vainionpaa A, et al. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone. 2007;40(3):604–11.

    Article  PubMed  Google Scholar 

  181. Rundgren A, et al. Effects of a training programme for elderly people on mineral content of the heel bone. Arch Gerontol Geriatr. 1984;3(3):243–8.

    Article  CAS  PubMed  Google Scholar 

  182. Williams JA, et al. The effect of long-distance running upon appendicular bone mineral content. Med Sci Sports Exerc. 1984;16(3):223–7.

    Article  CAS  PubMed  Google Scholar 

  183. Chubak J, et al. Effect of exercise on bone mineral density and lean mass in postmenopausal women. Med Sci Sports Exerc. 2006;38(7):1236–44.

    Article  PubMed  Google Scholar 

  184. Bravo G, et al. A weight-bearing, water-based exercise program for osteopenic women: its impact on bone, functional fitness, and well-being. Arch Phys Med Rehabil. 1997;78(12):1375–80.

    Article  CAS  PubMed  Google Scholar 

  185. Cavanaugh DJ, Cann CE. Brisk walking does not stop bone loss in postmenopausal women. Bone. 1988;9(4):201–4.

    Article  CAS  PubMed  Google Scholar 

  186. Liu-Ambrose TY, et al. Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom. 2004;7(4):390–8.

    Article  PubMed  Google Scholar 

  187. Karinkanta S, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int. 2007;18(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  188. Gilsanz V, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74.

    Article  PubMed  Google Scholar 

  189. Johnell O, Eisman J. Whole lotta shakin ‘goin’ on. J Bone Miner Res. 2004;19(8):1205–7.

    Article  PubMed  Google Scholar 

  190. Rubin C, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51.

    Article  PubMed  Google Scholar 

  191. Verschueren SM, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–9.

    Article  PubMed  Google Scholar 

  192. Beck BR, Norling TL. The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil. 2010;89(12):997–1009.

    Article  PubMed  Google Scholar 

  193. Beck BR. Vibration therapy to prevent bone loss and falls: mechanisms and efficacy. Curr Osteoporos Rep. 2015;13(6):381–9.

    Article  PubMed  Google Scholar 

  194. Beck BR, et al. Novel, high-frequency, low-strain mechanical loading for premenopausal women with low bone mass: early findings. J Bone Miner Metab. 2006;24(6):505–7.

    Article  PubMed  Google Scholar 

  195. Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports. 2014;24(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  196. Shaw JM, Snow CM. Weighted vest exercise improves indices of fall risk in older women. J Gerontol A Biol Sci Med Sci. 1998;53(1):M53–8.

    Article  CAS  PubMed  Google Scholar 

  197. Nevill AM, et al. Does lower-body BMD develop at the expense of upper-body BMD in female runners? Med Sci Sports Exerc. 2003;35(10):1733–9.

    Article  PubMed  Google Scholar 

  198. Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int. 1987;40(2):59–63.

    Article  CAS  PubMed  Google Scholar 

  199. Ayalon J, et al. Dynamic bone loading exercises for postmenopausal women: effect on the density of the distal radius. Arch Phys Med Rehabil. 1987;68(5 Pt 1):280–3.

    CAS  PubMed  Google Scholar 

  200. Valimaki VV, Loyttyniemi E, Valimaki MJ. Quantitative ultrasound variables of the heel in Finnish men aged 18-20 yr: predictors, relationship to bone mineral content, and changes during military service. Osteoporos Int. 2006;17(12):1763–71.

    Article  PubMed  Google Scholar 

  201. Margulies JY, et al. Effect of intense physical activity on the bone-mineral content in the lower limbs of young adults. J Bone Joint Surg Am. 1986;68(7):1090–3.

    Article  CAS  PubMed  Google Scholar 

  202. Nordstrom A, Olsson T, Nordstrom P. Sustained benefits from previous physical activity on bone mineral density in males. J Clin Endocrinol Metab. 2006;91(7):2600–4.

    Article  PubMed  CAS  Google Scholar 

  203. Harding AT, et al. The LIFTMOR-M (Lifting Intervention For Training Muscle and Osteoporosis Rehabilitation for Men) trial: protocol for a semirandomised controlled trial of supervised targeted exercise to reduce risk of osteoporotic fracture in older men with low bone mass. BMJ Open. 2017;7(6):e014951.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bolam KA, van Uffelen JG, Taaffe DR. The effect of physical exercise on bone density in middle-aged and older men: a systematic review. Osteoporos Int. 2013;24(11):2749–62.

    Article  CAS  PubMed  Google Scholar 

  205. Allison SJ, et al. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53(2):321–8.

    Article  PubMed  Google Scholar 

  206. Allison SJ, et al. The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: a randomized controlled unilateral intervention. J Bone Miner Res. 2015;30(9):1709–16.

    Article  CAS  PubMed  Google Scholar 

  207. Bolam KA, et al. The osteogenic effect of impact-loading and resistance exercise on bone mineral density in middle-aged and older men: a pilot study. Gerontology. 2015;62(1):22–32.

    Article  PubMed  Google Scholar 

  208. Hinton PS, Nigh P, Thyfault J. Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone. 2015;79:203–12.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996;11(10):1539–44.

    Article  CAS  PubMed  Google Scholar 

  210. Courteix D, et al. Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med. 2005;26(5):332–8.

    Article  CAS  PubMed  Google Scholar 

  211. Iuliano-Burns S, et al. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res. 2003;18(1):156–62.

    Article  PubMed  Google Scholar 

  212. Stear SJ, et al. Effect of a calcium and exercise intervention on the bone mineral status of 16–18-y-old adolescent girls. Am J Clin Nutr. 2003;77(4):985–92.

    Article  CAS  PubMed  Google Scholar 

  213. Prince R, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res. 1995;10(7):1068–75.

    Article  CAS  PubMed  Google Scholar 

  214. Loucks AB, et al. Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab. 1992;75(2):514–8.

    CAS  PubMed  Google Scholar 

  215. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.

    Article  PubMed  Google Scholar 

  216. Tomten SE, et al. Bone mineral density and menstrual irregularities. A comparative study on cortical and trabecular bone structures in runners with alleged normal eating behavior. Int J Sports Med. 1998;19(2):92–7.

    Article  CAS  PubMed  Google Scholar 

  217. Zanker CL, Cooke CB. Energy balance, bone turnover, and skeletal health in physically active individuals. Med Sci Sports Exerc. 2004;36(8):1372–81.

    Article  CAS  PubMed  Google Scholar 

  218. Loucks AB, Stachenfeld NS, DiPietro L. The female athlete triad: do female athletes need to take special care to avoid low energy availability? Med Sci Sports Exerc. 2006;38(10):1694–700.

    Article  PubMed  Google Scholar 

  219. Loucks AB. Refutation of “the myth of the female athlete triad”. Br J Sports Med. 2007;41(1):55–7; author reply 57-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. DiPietro L, Stachenfeld NS. The myth of the female athlete triad. Br J Sports Med. 2006;40(6):490–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Robinson TL, et al. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res. 1995;10(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  222. Constantini NW, Warren MP. Special problems of the female athlete. Baillieres Clin Rheumatol. 1994;8(1):199–219.

    Article  CAS  PubMed  Google Scholar 

  223. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Phys. 1994;266(3 Pt 2):R817–23.

    CAS  Google Scholar 

  224. Hartard M, et al. Effects on bone mineral density of low-dosed oral contraceptives compared to and combined with physical activity. Contraception. 1997;55(2):87–90.

    Article  CAS  PubMed  Google Scholar 

  225. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes [editorial]. Osteoporos Int. 1997;7(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  226. Burr DB, et al. Exercise and oral contraceptive use suppress the normal age-related increase in bone mass and strength of the femoral neck in women 18–31 years of age. Bone. 2000;27(6):855–63.

    Article  CAS  PubMed  Google Scholar 

  227. Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab. 1993;77(3):770–5.

    CAS  PubMed  Google Scholar 

  228. MacConnie SE, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315(7):411–7.

    Article  CAS  PubMed  Google Scholar 

  229. Rowland TW, et al. Serum testosterone response to training in adolescent runners. Am J Dis Child. 1987;141(8):881–3.

    CAS  PubMed  Google Scholar 

  230. Wheeler GD, et al. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252(4):514–6.

    Article  CAS  PubMed  Google Scholar 

  231. Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988;20(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  232. Cooper CS, et al. Relationship of chronic endurance exercise to the somatotropic and sex hormone status of older men. Eur J Endocrinol. 1998;138(5):517–23.

    Article  CAS  PubMed  Google Scholar 

  233. Fiore CE, et al. The effects of muscle-building exercise on forearm bone mineral content and osteoblast activity in drug-free and anabolic steroids self-administering young men. Bone Miner. 1991;13(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  234. Yarasheski KE, Campbell JA, Kohrt WM. Effect of resistance exercise and growth hormone on bone density in older men. Clin Endocrinol. 1997;47(2):223–9.

    Article  CAS  Google Scholar 

  235. Taaffe DR, et al. Lack of effect of recombinant human growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance-trained elderly men. J Clin Endocrinol Metab. 1996;81(1):421–5.

    CAS  PubMed  Google Scholar 

  236. Taaffe DR, et al. Effect of recombinant human growth hormone on the muscle strength response to resistance exercise in elderly men. J Clin Endocrinol Metab. 1994;79(5):1361–6.

    CAS  PubMed  Google Scholar 

  237. Gregg EW, et al. Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group [see comments]. Ann Intern Med. 1998;129(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  238. Jaglal SB, Kreiger N, Darlington G. Past and recent physical activity and risk of hip fracture. Am J Epidemiol. 1993;138(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  239. Jaglal SB, Kreiger N, Darlington GA. Lifetime occupational physical activity and risk of hip fracture in women. Ann Epidemiol. 1995;5(4):321–4.

    Article  CAS  PubMed  Google Scholar 

  240. Schwartz AV, et al. Characteristics of falls and risk of hip fracture in elderly men. Osteoporos Int. 1998;8(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  241. Korpelainen R, et al. Lifelong risk factors for osteoporosis and fractures in elderly women with low body mass index--a population-based study. Bone. 2006;39(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  242. Sinaki M, Lynn SG. Reducing the risk of falls through proprioceptive dynamic posture training in osteoporotic women with kyphotic posturing: a randomized pilot study. Am J Phys Med Rehabil. 2002;81(4):241–6.

    Article  PubMed  Google Scholar 

  243. Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis. Osteoporos Int. 2013;24(7):1937–50.

    Article  CAS  PubMed  Google Scholar 

  244. Karinkanta S, et al. Combined resistance and balance-jumping exercise reduces older women’s injurious falls and fractures: 5-year follow-up study. Age Ageing. 2015;44(5):784–9.

    Article  PubMed  Google Scholar 

  245. Kemmler W, et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int. 2015;26(10):2491–9.

    Article  CAS  PubMed  Google Scholar 

  246. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–7.

    Article  PubMed  Google Scholar 

  247. Norton R, et al. Circumstances of falls resulting in hip fractures among older people. J Am Geriatr Soc. 1997;45(9):1108–12.

    Article  CAS  PubMed  Google Scholar 

  248. Cummings SR, et al. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA. 1990;263(5):665–8.

    Article  CAS  PubMed  Google Scholar 

  249. Whipple RH, Wolfson LI, Amerman PM. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc. 1987;35(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  250. Aniansson A, et al. Impaired muscle function with aging. A background factor in the incidence of fractures of the proximal end of the femur. Clin Orthop. 1984;(191):193–201.

    Google Scholar 

  251. Dargent-Molina P, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. [published erratum appears in Lancet 1996 Aug 10;348(9024):416]. Lancet. 1996;348(9021):145–9.

    Article  CAS  PubMed  Google Scholar 

  252. Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72–84.

    Article  CAS  PubMed  Google Scholar 

  253. Greig AM, et al. Balance impairment is related to vertebral fracture rather than thoracic kyphosis in individuals with osteoporosis. Osteoporos Int. 2007;18(4):543–51.

    Article  CAS  PubMed  Google Scholar 

  254. Chan BK, et al. Incident fall risk and physical activity and physical performance among older men: the Osteoporotic Fractures in Men Study. Am J Epidemiol. 2007;165(6):696–703.

    Article  PubMed  Google Scholar 

  255. Allen SH. Exercise considerations for postmenopausal women with osteoporosis. Arthritis Care Res. 1994;7(4):205–14.

    Article  CAS  PubMed  Google Scholar 

  256. Drinkwater BL. Exercise in the prevention of osteoporosis. Osteoporos Int. 1993;3(Suppl 1):169–71.

    Article  PubMed  Google Scholar 

  257. Englund U, et al. A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int. 2005;16(9):1117–23.

    Article  PubMed  Google Scholar 

  258. Devereux K, Robertson D, Briffa NK. Effects of a water-based program on women 65 years and over: a randomised controlled trial. Aust J Physiother. 2005;51(2):102–8.

    Article  PubMed  Google Scholar 

  259. Wolfson L, et al. Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:64–7.

    Google Scholar 

  260. Korpelainen R, et al. Effect of exercise on extraskeletal risk factors for hip fractures in elderly women with low BMD: a population-based randomized controlled trial. J Bone Miner Res. 2006;21(5):772–9.

    Article  PubMed  Google Scholar 

  261. Madureira MM, et al. Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial. Osteoporos Int. 2007;18(4):419–25.

    Article  CAS  PubMed  Google Scholar 

  262. Robertson MC, et al. Preventing injuries in older people by preventing falls: a meta-analysis of individual-level data. J Am Geriatr Soc. 2002;50(5):905–11.

    Article  PubMed  Google Scholar 

  263. Lord SR, et al. The effect of a 12-month exercise trial on balance, strength, and falls in older women: a randomized controlled trial. J Am Geriatr Soc. 1995;43(11):1198–206.

    Article  CAS  PubMed  Google Scholar 

  264. Lord SR, et al. The effect of an individualized fall prevention program on fall risk and falls in older people: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(8):1296–304.

    Article  PubMed  Google Scholar 

  265. Barnett A, et al. Community-based group exercise improves balance and reduces falls in at-risk older people: a randomised controlled trial. Age Ageing. 2003;32(4):407–14.

    Article  PubMed  Google Scholar 

  266. Lord SR, et al. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J Am Geriatr Soc. 2003;51(12):1685–92.

    Article  PubMed  Google Scholar 

  267. Campbell AJ, et al. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ. 1997;315(7115):1065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Sherrington C, et al. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011;22(3–4):78–83.

    Article  PubMed  Google Scholar 

  269. Silva RB, Eslick GD, Duque G. Exercise for falls and fracture prevention in long term care facilities: a systematic review and meta-analysis. J Am Med Dir Assoc. 2013;14(9):685–9.e2.

    Article  PubMed  Google Scholar 

  270. Tiedemann A, et al. Exercise and Sports Science Australia position statement on exercise and falls prevention in older people. J Sci Med Sport. 2011;14(6):489–95.

    Article  PubMed  Google Scholar 

  271. Jensen J, et al. Effects of a fall prevention program including exercise on mobility and falls in frail older people living in residential care facilities. Aging Clin Exp Res. 2004;16(4):283–92.

    Article  PubMed  Google Scholar 

  272. Latham NK, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc. 2003;51(3):291–9.

    Article  PubMed  Google Scholar 

  273. Shimada H, et al. New intervention program for preventing falls among frail elderly people: the effects of perturbed walking exercise using a bilateral separated treadmill. Am J Phys Med Rehabil. 2004;83(7):493–9.

    Article  PubMed  Google Scholar 

  274. Wolf SL, et al. Selected as the best paper in the 1990s: reducing frailty and falls in older persons: an investigation of tai chi and computerized balance training. J Am Geriatr Soc. 2003;51(12):1794–803.

    Article  PubMed  Google Scholar 

  275. Beck BR, et al. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–45.

    Article  PubMed  Google Scholar 

  276. Karlsson M. Does exercise reduce the burden of fractures? A review. Acta Orthop Scand. 2002;73(6):691–705.

    PubMed  Google Scholar 

  277. Strotmeyer ES, et al. Reduced peripheral nerve function is related to lower hip BMD and calcaneal QUS in older white and black adults: the Health, Aging, and Body Composition Study. J Bone Miner Res. 2006;21(11):1803–10.

    Article  PubMed  Google Scholar 

  278. Whalen RT, Carter DR, Steele CR. Influence of physical activity on the regulation of bone density. J Biomech. 1988;21(10):825–37.

    Article  CAS  PubMed  Google Scholar 

  279. Mayoux-Benhamou MA, et al. Predictors of compliance with a home-based exercise program added to usual medical care in preventing postmenopausal osteoporosis: an 18-month prospective study. Osteoporos Int. 2005;16(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  280. Gianoudis J, et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res. 2014;29(1):182–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda R. Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beck, B.R., Winters-Stone, K.M. (2020). Exercise in the Prevention of Osteoporosis-Related Fractures. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics