Skip to main content

Tunneling Transport Between Transition Metal Dichalcogenides

  • Chapter
  • First Online:
Layered Two-Dimensional Heterostructures and Their Tunneling Characteristics

Part of the book series: Springer Theses ((Springer Theses))

  • 550 Accesses

Abstract

Over the last 5 years, many groups have worked to fabricate vertical tunneling devices using graphene, h-BN, and 2D semiconducting transition metal dichalcogenides (TMDs). Within our own collaboration, we sought to make devices exhibiting both resonant tunneling (between like bands in either electrode) and steep switching (between unlike bands). Presently, there have been several successful reports of negative differential resistance (NDR) in a number of devices [1–3], beyond the graphene ones discussed in Chaps. 7 and 8. An even greater number of studies have resulted in 2D devices with a similar vertical geometry that display neither NDR nor steep switching based on vertical tunneling [4–7]. It is the goal of this chapter to discuss efforts within our collaboration to grow vertical 2D heterostructures and study their properties with low-energy electron microscopy, relating the results when possible to tunneling transport characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Roy, M. Tosun, X. Cao, H. Fang, D.-H. Lien, P. Zhao, Y.-Z. Chen, Y.-L. Chueh, J. Guo, A. Javey, Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9 (2), 2071–2079 (2015). https://doi.org/10.1021/nn507278b

    Article  Google Scholar 

  2. Y.-C. Lin, R.K. Ghosh, R. Addou, N. Lu, S.M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M.J. Kim, L.-J. Li, R.M. Wallace, S. Datta, J.A. Robinson, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015). https://doi.org/10.1038/ncomms8311

    Article  Google Scholar 

  3. R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D.A. Muller, D. Jena, H.G. Xing, Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15 (9), 5791–5798 (2015). https://doi.org/10.1021/acs.nanolett.5b01792

    Article  ADS  Google Scholar 

  4. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky et al., Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8 (2), 100–103 (2013). https://doi.org/10.1038/nnano.2012.224

    Article  ADS  Google Scholar 

  5. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, K.S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340 (6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547

    Article  ADS  Google Scholar 

  6. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotech. 8 (12), 952–958 (2013). https://doi.org/10.1038/nnano.2013.219

    Article  ADS  Google Scholar 

  7. C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, P. Kim, Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9 (9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150

    Article  ADS  Google Scholar 

  8. Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.-J. Li, J.-C. Idrobo, J. Kong, van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12 (6), 2784–2791 (2012). https://doi.org/10.1021/nl204562j

  9. Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C.H. Lee, C. Sun, L. Calderin, P.N. Browning, M.S. Bresnehan, M.J. Kim, T.S. Mayer, M. Terrones, J.A. Robinson, Direct synthesis of van der Waals solids. ACS Nano 8 (4), 3715–3723 (2014). https://doi.org/10.1021/nn5003858

    Article  Google Scholar 

  10. Y.-C. Lin, C.-Y.S. Chang, R.K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M.J. Kim, J.T. Robinson, R.M. Wallace, T.S. Mayer, S. Datta, L.-J. Li, J.A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 14 (12), 6936–6941 (2014). https://doi.org/10.1021/nl503144a

    Article  ADS  Google Scholar 

  11. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P.M. Ajayan, Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11 (5), 2032–2037 (2011). https://doi.org/10.1021/nl200464j

    Article  ADS  Google Scholar 

  12. P. Mende, Growth and surface studies of two-dimensional materials. Ph.D. Thesis, Carnegie Mellon University, 2015

    Google Scholar 

  13. S. Roth, F. Matsui, T. Greber, J. Osterwalder, Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). Nano Lett. 13 (6), 2668–2675 (2013). https://doi.org/10.1021/nl400815w

    Article  ADS  Google Scholar 

  14. W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12 (9), 792–797 (2013). https://doi.org/10.1038/nmat3695

    Article  ADS  Google Scholar 

  15. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324 (5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  ADS  Google Scholar 

  16. S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007). https://doi.org/10.1103/PhysRevB.76.075429

    Article  ADS  Google Scholar 

  17. J. Coraux, A.T. N‘Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8 (2), 565–570 (2008). https://doi.org/10.1021/nl0728874

  18. P.W. Sutter, J.-I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7 (5), 406–411 (2008). https://doi.org/10.1038/nmat2166

    Article  ADS  Google Scholar 

  19. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9 (12), 4268–4272 (2009). https://doi.org/10.1021/nl902515k

    Article  ADS  Google Scholar 

  20. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108 (52), 19912–19916 (2004). https://doi.org/10.1021/jp040650f

    Article  Google Scholar 

  21. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312 (5777), 1191–1196 (2006). https://doi.org/10.1126/science.1125925

    Article  ADS  Google Scholar 

  22. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8 (3), 203–207 (2009). https://doi.org/10.1038/nmat2382

    Article  ADS  Google Scholar 

  23. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009). https://doi.org/10.1103/PhysRevLett.103.246804

    Article  ADS  Google Scholar 

  24. S.M. Eichfeld, L. Hossain, Y.-C. Lin, A.F. Piasecki, B. Kupp, A.G. Birdwell, R.A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R.M. Wallace, M.J. Kim, T.S. Mayer, J.M. Redwing, J.A. Robinson, Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9 (2), 2080–2087 (2015). https://doi.org/10.1021/nn5073286

    Article  Google Scholar 

  25. Y.-C. Lin, J. Li, S.C. de la Barrera, S.M. Eichfeld, Y. Nie, R. Addou, P.C. Mende, R.M. Wallace, K. Cho, R.M. Feenstra, J.A. Robinson, Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Nanoscale 8, 8947–8954 (2016). https://doi.org/10.1039/C6NR01902A

    Article  ADS  Google Scholar 

  26. R.M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G.L. Kellogg, J.T. Robinson, I.V. Vlassiouk, Low-energy electron reflectivity from graphene. Phys. Rev. B 87, 041406 (2013). https://doi.org/10.1103/PhysRevB.87.041406

    Article  ADS  Google Scholar 

  27. D.P. Gopalan, P.C. Mende, S.C. de la Barrera, S. Dhingra, J. Li, K. Zhang, N.A. Simonson, J.A. Robinson, N. Lu, Q. Wang, M.J. Kim, B. D’Urso, R.M. Feenstra, Formation of hexagonal boron nitride on graphene-covered copper surfaces. J. Mater. Res. 31, 945–958 (2016). https://doi.org/10.1557/jmr.2016.82

    Article  ADS  Google Scholar 

  28. S. Vishwanath, X. Liu, S. Rouvimov, P.C. Mende, A. Azcatl, S. McDonnell, R.M. Wallace, R.M. Feenstra, J.K. Furdyna, D. Jena, H.G. Xing, Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2 (2), 024007 (2015). https://doi.org/10.1088/2053-1583/2/2/024007

  29. J.A. Robinson, M. Hollander, M. LaBella III, K.A. Trumbull, R. Cavalero, D.W. Snyder, Epitaxial graphene transistors: Enhancing performance via hydrogen intercalation. Nano Lett. 11 (9), 3875–3880 (2011). https://doi.org/10.1021/nl2019855

    Article  ADS  Google Scholar 

  30. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007). https://doi.org/10.1103/PhysRevLett.98.206802

    Article  ADS  Google Scholar 

  31. S. Kopylov, A. Tzalenchuk, S. Kubatkin, V.I. Fal’ko, Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 97 (11), 112109 (2010). https://doi.org/10.1063/1.3487782

  32. J. Ristein, S. Mammadov, Th. Seyller, Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 108, 246104 (2012). https://doi.org/10.1103/PhysRevLett.108.246104

    Article  ADS  Google Scholar 

  33. S. Mammadov, J. Ristein, R.J. Koch, M. Ostler, C. Raidel, M. Wanke, R. Vasiliauskas, R. Yakimova, T. Seyller, Polarization doping of graphene on silicon carbide. 2D Mater. 1 (3), 035003 (2014). https://doi.org/10.1088/2053-1583/1/3/035003

  34. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  35. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  36. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980). https://doi.org/10.1103/PhysRevLett.45.566

    Article  ADS  Google Scholar 

  37. M.J. Hollander, A. Agrawal, M.S. Bresnehan, M. LaBella, K.A. Trumbull, R. Cavalero, D.W. Snyder, S. Datta, J.A. Robinson, Heterogeneous integration of hexagonal boron nitride on bilayer quasi-free-standing epitaxial graphene and its impact on electrical transport properties. Phys. Status Solidi A 210 (6), 1062–1070 (2013). ISSN 1862-6319. https://doi.org/10.1002/pssa.201228683

  38. Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 9 (10), 3430–3434 (2009). https://doi.org/10.1021/nl901572a

    Article  ADS  Google Scholar 

  39. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). https://doi.org/10.1103/PhysRevB.88.085433

    Article  ADS  Google Scholar 

  40. E. McCann, M. Koshino, The electronic properties of bilayer graphene. Rep. Prog. Phys. 76 (5), 056503 (2013). https://doi.org/10.1088/0034-4885/76/5/056503

  41. M. (Oscar) Li, D. Esseni, G. Snider, D. Jena, H.G. Xing, Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115 (7), 074508 (2014). https://doi.org/10.1063/1.4866076

  42. Y. Liang, S. Huang, R. Soklaski, L. Yang, Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys. Lett. 103 (4), 042106 (2013). https://doi.org/10.1063/1.4816517

  43. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014). https://doi.org/10.1103/PhysRevLett.113.026803

    Article  ADS  Google Scholar 

  44. C. Zhang, Y. Chen, A. Johnson, M.-Y. Li, L.-J. Li, P.C. Mende, R.M. Feenstra, C.-K. Shih, Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 15 (10), 6494–6500 (2015). https://doi.org/10.1021/acs.nanolett.5b01968

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de la Barrera, S.C. (2017). Tunneling Transport Between Transition Metal Dichalcogenides. In: Layered Two-Dimensional Heterostructures and Their Tunneling Characteristics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69257-9_4

Download citation

Publish with us

Policies and ethics